The Large Hadron Collider at CERN is recreating the conditions that prevailed a fraction of a second after the Big Bang.

We can detect radiation from the early formation of the Universe back as far as this point. Before this, the Universe is opaque: it's as if a veil has been pulled over it.

Matter clumps together under its own gravity forming the first protogalaxies and within them, the first stars.

Stars are nuclear furnaces in which heavier elements such as carbon, oxygen, silicon and iron are formed. Massive stars exploding as supernovae create even heavier elements. Such explosions send material into space ready to be incorporated into future generations of stars and planets.

The first life appears on Earth in the form of simple cells. Impacting comets and asteroids might have contributed organic molecules to Earth. Life spreads across the globe.

The Universe begins 13.7 billion years ago with an event known as the Big Bang. Both time and space are created in this event.

Nuclei of hydrogen, helium, lithium and other light elements form.

The Sun, along with its eight planets, and all the asteroids, comets and Kuiper Belt objects, such as Pluto, form from the debris left behind by earlier generations of stars.

Initially, the expansion of the Universe decelerated – but a few billion years after the Big Bang, the expansion began to accelerate. The acceleration is caused by a mysterious force known as 'dark energy', the nature of which is completely unknown.

In a few billion years the Sun's outer layers will expand as it turns into a Red Giant star. Life on Earth will become impossible.

Stars no longer form; matter is trapped in black holes or dead stars. Protons decay and black holes evaporate, leaving the Universe to its ultimate fate as cold, dead, empty space, containing only radiation, which itself too will eventually disperse.