BIB|C

Research White Paper

WHP 191

January 2011

A system for distributed
multi-camera capture and processing

Jim Easterbrook, Oliver Grau and Peter Schibel

BRITISH BROADCASTING CORPORATION

BBC Research White Paper WHP 191

A system for distributed multi-camera capture and processing

Jim Easterbrook, Oliver Grau and Peter Schiibel

Abstract

This contribution describes a distributed multi-camera capture and processing
system for real-time media production applications. Its main design purpose is to
allow prototyping of distributed processing algorithms for free-viewpoint
applications, but the concept can be adapted to other (multicamera) applications.
The system integrates broadcast components into a distributed IT-based
processing system. The problems that are addressed in this contribution are the
synchronisation of these sub-systems and the data and control flow.

For the synchronisation of the broadcast and IT components we developed a
time stamp mechanism based on tightly synchronised PC clocks. This time is
used as the master clock of the system. The video frames from the gen-locked
multi-camera streams are implicitly synchronised by adjusting their relative timing
against this system clock. For the purpose of synchronising the PC clocks two
protocols (NTP and PTP) were evaluated. The second main contribution is the
processing of multi- camera data in the distributed system. For this purpose a
software framework was developed based on a distributed concurrency system
implemented in Python.

This document was originally presented at the 7th European Conference on
Visual Media Production (CVMP 2010), 17th Nov. 2010, London, UK.

Additional key words: Real-time image processing, image capture, 3D
reconstruction, free-viewpoint rendering, special effects, production system.

White Papers are distributed freely on request.

Authorisation of the Head of Broadcast/FM Research is
required for publication.

© BBC 2011. All rights reserved. Except as provided below, no part of this document may be
reproduced in any material form (including photocopying or storing it in any medium by electronic
means) without the prior written permission of BBC Future Media & Technology except in
accordance with the provisions of the (UK) Copyright, Designs and Patents Act 1988.

The BBC grants permission to individuals and organisations to make copies of the entire document
(including this copyright notice) for their own internal use. No copies of this document may be
published, distributed or made available to third parties whether by paper, electronic or other
means without the BBC's prior written permission. Where necessary, third parties should be
directed to the relevant page on BBC's website at http://www.bbc.co.uk/rd/pubs/whp for a copy of
this document.

A system for distributed multi-camera capture and processiig

Jim Easterbrook, Oliver Grau, Peter Schibel

BBC Research & Development, UK.

Keywords: Real-time image processing, image capturéme. A number of paradigms and systems have been
3D reconstruction, free-viewpoint rendering, special effectdeveloped to achieve this (see for example [8]). Existing

production system. approaches use for example loosely coupled PC clusters or
tighter coupled multi-processor systems as a general solution
Abstract to this problem.

This contribution describes a distributed multi-camera captlﬁgme of the;e approachgs can .be ;uccessfully applied to off-
and processing system for real-time media productidf€ Processing for media applications, but usually do not

applications. Its main design purpose is to allow prototypi dress the real-time requirements in broadcast. Virtual reglity
of distributed processing algorithms for free-viewpoirk’R) Systems [19] on the other hand do address real-time

applications, but the concept can be adapted to other (muffPECts. but usually on a different level: they are usually
camera) applications. The system integrates broadc3ggigned towards a low system latency, as the system reaction
components into a distributed IT-based processing systdm/mpPortant to give the user a feeling of immersion. The
The problems that are addressed in this contribution are fHd1€ved frame rate of produced imagery is not so critical, as

synchronisation of these sub-systems and the data and corid® as it does not fall below a certain threshold. Broadcast
systems on the contrary require the ability to deliver imagery

at a given frame rate (50/60 fps).
For the synchronisation of the broadcast and IT components) o
we developed a time stamp mechanism based on tigh't:I rther, VR systems are designed to distribute 3D data. Our

synchronised PC clocks. This time is used as the mas@éPlication scenario requires processing and transmission of
clock of the system. The video frames from the gen-lockég@l camera data. This is also an issue in distributed camera
multi-camera streams are implicitly synchronised by adjustirfyStems for surveillance applications [23]. Architectures found
their relative timing against this system clock. For the purpogét_h'S f'elq have similar reqwrements to our sysfte.m, but the|r
of synchronising the PC clocks two protocols (NTP an@@in goal is usually to extract high level semanUcmformaﬂpn
PTP) were evaluated. The second main contribution is tRBOUt the scene. In contrast to that broadcast applications
processing of multi-camera data in the distributed system. F&Uire, atleaston the production side, a high standard of video

this purpose a software framework was developed based ottty to be passed through the entire system chain. The image
distributed concurrency system implemented in Python, ~ duality is usually guaranteed by processing uncompressed or
near-loss-less compressed video on the production side (see for

example [22]).
1 Introduction ple [22])

. L . o An approach to combine features of VR and broadcast
This contribution describes a_system for dls_trlbgted m“'ﬁb_‘roduction systems was the subject of our previous work [12].
camera capture and processing. The motivation for thigis system provides basically two main functionalities for
development was to design a framework that allowge production of special effects: firstly, video from a number
the development and testing of multi-camera real-timg (standard definition) cameras can be captured and stored
applications fo_r broadcast. In_ particula_r this_ includes captu gisk in uncompressed quality. Secondly, the images can
of stereoscopic 3D and wide-baseline images for fregs nrocessed in real-time to generate a 3D reconstruction of
viewpoint applications in special effects (e.g. [17, 13]). Thge action. The real-time generated 3D model of the action
design goals for the system were to provide a framework thghs then used in a renderer together with (optional) virtual
allows the implementation and test of new algorithms fof,mponents to generate a live preview of the composited scene
these applications in a broadcast environment. The emph_%ﬂa in a view-dependent actor feedback system. This was
was to create a system for prototyping, that means the abilf¥monstrated with a frame rate of approximately 10 fps for the
to quickly test new image processing and 3D algorithmsp reconstruction, which is just good enough to make creative
The concepts and most components could also be used fgisions on set. The final quality output was then generated

production systems and could be combined e.g. with tools p5m the stored video using an offline process (see also [11]).
tape-less production [22].
In our recent work we are aiming to generate visual effects in

Distributed systems are mostly designed to decomposged|.time. This paper describes the challenges and the system

computational task and delegate the computational load ofignework we developed to implement this functionality. The
a number of sub-systems in order to reduce the computation

two main contributions of this paper are the newly developadurces such as cameras, and a time-code signal to allow
synchronisation of broadcast equipment (the cameras) widitordings to be time aligned. The use of time-code often
commodity IT based components, and the software framewadquires extra connections or devices to embed the timalsign
that allows distributed processing. Both aspects will be the video stream. We avoid the use of time-code by tightly
described in section 3. synchronising the IT components’ clocks, then using them as

. a distributed time reference. These concepts are desdribed
The following section gives a brief overview of the system,

Section 4 describes the implementation of a free-viewpoirrﬁ}Ore detail in the next section.

capture and rendering system based on our framework. Harther, processing modules are implemented as distdbute
section 5 we present some results and the paper finishes withvices on the IT system. Details are also explained in the
some concluding remarks. next section.

2 System Overview 3 Addistributed multi-camera processing framework

cam1 As in our earlier system [12], the output of each camera is
4&7 captured by a commodity PC equipped with a video capture
' Rgpotic head card and a disk array. Unlike the earlier system, we are now
Services capturing uncompressed high definition (HD) vileBach PC
has a dual channel capture card, so can capture the outputs of
two cameras. The PCs typically have 6 disk drives: one is used
for the operating system and software, and the remaining five

777777777777 | i Real-Time

3D Shape /

L T e
I

Head Tracking are configured as a RAIDO array. Using 500GByte drives we
] can store in excess of six hours (or three hours for two cHanne
Local area network > capture) which is enough time for even longer (experimgntal

shooting sessions.
Figure 1. System overview. Each camera (Cam-1..Cam-N) is

connected to a capturing server (Cap-1..Cap-N). 3.1 Synchronisation

In our earlier system we used RS232 serial connections to
This section gives a brief overview of the hardware argknd trigger signals to each capture PC. This requires each
software components of the system. Figure 1 is a schemd@iC to have an RS232 interface. This increases the number
diagram of the component parts. The blocks represeasftinterconnections between machines (distribution afileps
functional modules and not necessarily physical devicemay also be needed) and has not proved to be reliable enough
For example each camera (Cam-1..Cam-N) is assigned tépause in a production environment. In the current system
(logical) capture server. Physically the capture servees ave make use of tightly synchronised PC system clocks, for
implemented using IT components, i.e. a rack-mounted P&le instructing all servers to start capturing at theesa
This PC can host a number of logical capture servers. time instant. The PCs are synchronised using either the
our recent configuration we built up a studio system witlvell known Network Time Protocol (NTP) or the IEEE 1588
a number of HD cameras (Sony HDC-X300 and CandPrecision Time Protocol (PTP). The EBU/SMPTE task force
XL H1) connected via HD-SDI link to the PCs. Currently twapn timing and synchronization [16] has proposed using PTP
HD-streams are captured on one PC, that means two logitakynchronise future audio/video hardware to within 1us. A
capture servers are running on the same hardware system. disadvantage of PTP is that all the machines must be corthecte
The communication and data exchange between thé%éh? same gthernet switch or hub, butthis is not a problem in
components is based upon a local area network. This conc%[t%p'cal studio setup.
provides a cost-effective way of implementing a system whidAs usual in TV production, all the cameras are ‘genlocked’
can be easily configured to suit particular requirements: Fo a common source of video synchronisation signals. This
example the number of cameras can be varied dependingemsures that the video outputs of the cameras are synchdpnis
the available space in the studio and the specific productismthe PCs’ clocks only need to be synchronised to an accuracy
needs. of a few milliseconds. If the cameras have different intérna
grré)cessing delays, then although they are genlocked thiey wi
capture frames at different times. This can be compensated f
by adding or subtracting a suitable offset to the PC'’s clovket
to generate a true capture time. Any difference betweerovide
capture cards can also be compensated for. This flexibility
One challenge in the integration of broadcast equipment inould be harder to achieve with the simple synchronisatio |
a predominantly IT based system is the time synchronisatiapproach.
of both sub-systems. Broadcast equipment traditionalgsus
a reference video signal to synchronise (or ‘genlock’) wide 11920 x 1080 pixels, 8 bit in 4:2:2 YUV at 25 frames per second

Usually the cameras are fixed and their parameters
determined with a calibration procedure. In addition, caane
equipped with a real-time tracking system or robotic cdigth
cameras can be used, as shown for Cam-N in figure 1.

The time offset between different camera channels is fountfithe component’s ‘outboxes’. The Kamaelia system picks up
experimentally by capturing a short clip of a clapperbotirdn the message and delivers it to the next component.
manually examining the recordings of each camera to find the
frame number where the clapper closed. This sets the timi< >
“FRAMES”
= | | | |

to frame accuracy — finer adjustments can be made to so
cameras by setting their genlock offset. Making this adestt

would require a more sophisticated ‘clapperboard’, such as l

row of LEDs that light up in sequence at millisecond intesval EUBHELTO S SR
Every video frame is given a timestamp that represents the j T

actual clock time when the camera captured that image, in

milliseconds since the UNIX epoch — 1st January 1970. This video Temporal TmageResizer
timestamp, and other ‘metadata’, accompanies the franmk (an

anything derived from it, such as moving camera parameters o

a 3D model) through the entire system, and allows components —

receiving feeds from several camera channels to be confident File Writer SocketSender
that they are synchronised. This is similar to, but simgiant

the time related labeling (TRL) proposed by the EBU/SMPTE
task force. —>

3.2 Circular buffer

With the ever decreasing cost of computer memory it has

become quite reasonable to store several seconds of vide&igure 2: Distribution of video from frame grabber to

a PC’s main memory. Such a buffer is useful when recordimgultiple destinations.

uncompressed video to disk — the data stream can be divided

into suitably sized blocks, and any timing variations (&élgk Components can be connected together to form quite complex
seeking) can be accommodated. Using a large circular buf§gstems. They can also be dynamically created and destroyed
gives us another advantage — we can start a recording a colifire 2 shows the core of our capture server process. At the
of seconds before the system operator hits the “recorddbutttop is a Kamaelia ‘Backplane’ component called “FRAMES”.
This is a useful feature, for example to record incidents his provides easy distribution of video to any number of
sports games. Each capture process continually storesasite nSubscribeTo’ components, which can be created as required
recent 300 frames, and their time stamps, in memory. WhErames are sent to the backplane by a ‘PublishTo’ component
the operator presses “record”, a time stamp two seconds ithat receives them from a video grabber component.

the past is sent to the capture servers. They then recordko

every frame in the buffer that has a later time stamp. dIlhere are two server task pipelines active in figure 2: one tha

writes video to disk and one that sends reduced size video to
3.3 Software framework a remote client via a TCP socket. This latter task is used by a

.) controller GUI that has multiple video windows, each shayvin
The system software is implemented using Python and C/C+e yideo from a different camera, as shown in figure 3.

Python's scripting and high-level language concept emablgne server creates pipelines like these in response to segjue
rapid development and easy experimentation, both desirapl,, client applications. We are using Pyro (Python Remote

in an experimental system. The actual “number crunchingjpy;ects) [9] for this client-server communication. Pyroais

required to process video is programmed in C or C++, which|j§nyeight system that is well suited to this application.
interfaced to Python using SWIG [2]. Python interfaces to thé

capture card's SDK are also generated by SWIG. Unlike our earlier system [12], where video frames (or
processed frames such as key signals) were “pulled” from the

A natural paradigm for video and graphics processing iSc8nre servers by other parts of the system in a clieneserv
pipeline of components, each performing a simple task Bfhqe| we are using a “push” model: the capture servers
combining to form a complex system. Well known examples @bnq frames continuously to any process that has requested

this are UNIX pipes and Microsoft's DirectShow frameworkihem . This minimises latency and reduces the likelihood of
We use the Kamaelia framework [7] to create and connggtqiocks in the system.

such components. This framework is designed to simplify the
implementation of concurrent systems. 3.4 Strategies to cope with frame-drops

A Kamaelia component is conceptually quite simple. Aftan any system as complex as this, with up to a dozen channels
initialisation it enters a loop, waiting for messages toemp of HD video being captured to disk, processed and passed over
in any of its ‘inboxes’. These messages typically represenhetworks between PCs, some thought needs to be given to what
unit of work, such as a video frame to be processed. Afteappens when network congestion or processor overload lead

completion of the work, any output is placed in one or mote some frames being dropped.

4. texture computation / preparation
5. rendering

The following gives a brief description of the implementati
of these modules and how they are integrated into the
distributed system.

4.1 Camera setup and calibration

As described, the system is very scalable with respect to
the number of cameras used. The cameras can be arranged
in an inhomogeneous, unstructured setup, allowing for
example varying object distances, baselines, focal length
sensor sizes and resolutions. Calibration is achievedgusin
Figure 3: A simple GUI client controlling 12 camera a large planar calibration target (chart calibration) treat
channdls. recorded in various poses to cover the whole volume used for
reconstruction. Static cameras are calibrated once before

i i capture session. For non-static cameras a live calibragion
For example, the computation of a visual hull should USfed with techniques described in [20, 21]
silhouettes derived from all camera channels. If any oféhos T

channels drops a frame, the visual hull computation would k&2 Image processing and 3D Reconstruction
incomplete for that time instance. Two strategies would beh) isual hull
possible here: either a degraded visual hull could be coeapuf '€ 3D reconstruction uses an octree-based visual hu

from the available silhouettes, or the computation could 30rithm as presented in [12]. The visual hull algorithm
dropped entirely, skipping that time instant. relies on calibrated cameras and object silhouettes, gedvi

as segmentation images. The silhouettes are acquiredgtinrou
This latter strategy could fail if several camera channedsew chroma keying or difference keying. This is computed in
dropping frames: if each channel drops different time inista real-time on each capture server. The resulting segmentiati
there may never be a complete set from which to compute #gmpressed using run-length encoding and transmitted from
visual hull. The solution is to ensure that each channel sé®0othe server to any client via ‘push’ mode.

to drop the same time instants. This is achieved by using the ion is imol q inal h
same frame dropping strategy in every component, where Emze 3D reconstruction is implemented on a single PC, that

choice of which frame to drop is based on the frames’ tingéa\thers the camera calibration data and then receives and
stamps decodes the segmentation data. An alternative approach for

_ . distributing the load is described in [3]. In this paper atigér
In any case the server records the full video rate to (lodak,d octree is computed on each capture server and then passed on

so only live 'preview’ quality processing is affected bywetk to the next. This approach results in a long latency.
congestion. Final non real time processing has the fullovide

signal available. 4.3 Rendering

_ _ _ The rendering of the final virtual scene requires the
4 Implementation of a free-viewpoint capture and reconstructed 3D mesh and one or more images for texturing.
rendering system Both the mesh and the image data change for every frame.
. A dedicated rendering PC collates the timestamped inputs
This section describes the implementation of a dIStI’IbUt?gr every frame and renders them using a high-end NVIDIA

3D reconstruction an_d free-wewpom_t rendering SyStem.gjs.l(%uadroFX 4800 graphics card. The resulting meshes typicall
Image-based Rendering (IBR) techniques. The emphasis ison . L7
ave only a low complexity (compared to the capabilities of

describing the system aspects and not so much the algotithmi

side of the implemented methddsAlthough the system was modern graphics hardware) of up to 40K vertices. However,
. ; s o . the texture images are at 1080p HD resolution and require
designed for this application scenario it can be viewed

as. . 7

an example since other classes of applications could alsoerf?ément processing.
implemented with the system architecture. To render the virtual view, texture images from original esian
The image and 3D processing consists of the following steps\é(')ews are ysed. . I_n the. S'".‘p'eSt and fastest case the single

X est matching original view is calculated based on its ikelat
modules: . .) :
position and orientation to the virtual camera. The whoénsc
is then textured using only this view’s texture. This appioa
can cause temporal artefacts, e.g. strong discontinuities
between consecutive frames when the best matching view
changes. It also does not take care of object areas that were
2more detail on aspects of the algorithms can be found in [12] occluded or not in view in the chosen original view (spatial

1. camera calibration
2. image segmentation
3. 3D reconstruction

artefacts). ratio, whereas DXT3 and DXT5 have a 4:1 ratio. Due to its

. . hower complexity, DXT1 is best-suited as a basis for remleti
In our current setup we use a simple global selection of t eglications
: .

best camera view, based on camera angle deviation andlspgi‘to

resolution (using only object distance and sensor reswljti Initial tests with an open-source implementation [5] of the

We aim to incorporate per-polygon blending approaches asDiXT1 algorithm showed that on the server side an encoding

[6] and [10] in the future. frame rate of 10 fps is achievable on an Intel i7 machine. This
is however not enough to allow use in a real-time system.

4.3.1 Improved rendering A DXT-compatible texture compression algorithm for
real-time applications was first presented in [24]. Further

To produce more realistic results, more than one view shodffgProvements with focus on high resolution material pramis
be used. One option is to make a global blending of a smiP frame rates of up to 100 fps on modern Intel Xeon
number of the best matching views using multi-texturingisThmachines [18]. Experiments on latency in an IP-based HD
approach can take care of occluded or invisible regiongrag | ransmission system (also using Centaurus Il capture xards
as they are visible in at least one of the chosen views. Mctaowed that this improved DXT1 algorithm adds only about
sophisticated approaches were presented in [10] and [14] ¥§ms to the overall system latency [25].

determining the three best views for each individual polyg@rinally, DXTC algorithms using GPU-acceleration promise
and combining them with per-vertex blending weights. Th&en higher compression speeds [1]. But adding a dedicated
best views were chosen based only on the angle deviatigpy to every capture server was deemed to be impractical,

between virtual and original cameras. This method howevespecially because of the additional latency when trarisger
requires several pre-computations for the mesh, which m@yia back from the GPU.

hinder its usage in a real-time environment where the mesh

changes with every frame. 5 Results

Another approach unifies View-dependent Texture Mappi .

and Light Field Rendering techniques in a comprehens%g(—:‘1 Studio setup

analysis of the challenges and goals of Image-based Regderihe camera setup used in the following tests is comprised of 1
[6]. This new method, called Unstructured Lumigrap®D cameras and 1 SD camera. The HD cameras are arranged
Rendering, further includes terms for spatial resolitiand in a circle inside the TV studio at various heights between 1 m
the field-of-view into the computation of the blending weiigh and 5 m, with the additional SD camera looking straight down
on the scene from a height of 5.5 m. The angle between the
HD cameras varies between 17 and 65 degrees and their object
The view-dependent rendering will require more than one HBistances vary from 2 m to 5 m. Figure 4 shows four views of
resolution video frame (typically 2 or 3) for every outpudrine. a captured studio scene.

W'tf? a teIewsmB frar&we rate (sz 25 fps éh's can put a lot qf, ge segmentation is achieved with chroma keying on blue.
traffic on an [P-based network. Image data in uncompres studio floor and walls are covered in retro-reflectivéhglo

YUV format (4:2:2, 8 bit) with 1080p HD resolution amounts, o, is illuminated by rings of blue LEDs that are arranged
to nearly 100 MByte/s per camera. The rendering shou{J}l

: : ; qound each camera lens [12].
therefore be restricted to a small number of image inputs, to
avoid unnecessary data transfer costs both over the IP rietwo
and between system memory and graphics card. An additio
option is to apply data compression to the transferred H

images.

4.4 Texture Compression

Traditional image compression methods add latency on b
the server side and on the renderer side, for compressing
decompressing the data, respectively. An alternativecambr
would be to use texture compression algorithms such as S3
(adopted by Microsoft as DXTC)[4]. DXTC is implemented
in hardware on all modern graphics cards, and therefore a
only minimal decompression latency on the renderer.

DXTC is a family of lossy compression algorithms. The actu
output quality, speed and compression ratio depend on &tk us
algorithm. For RGBA content DXT1 offers a 6:1 compressioRigure 4: | mages captured with the same timestamp.

3The spatial resolution depends on intrinsic camera paragetach as
sensor resolution and focal length, and on extrinsic camenanpeters, such as
object distance and obliqueness relative to the imagedczuft.

5.2 Synchronisation multiple cameras in a broadcast production environment was

o described.
We compared the synchronisation capabilities of PTP ang

NTP on our cluster of 8 video capture servers — 3 Dellhe developed time synchronisation between broadcast
PowerEdge 2950, 1 HP ProLiant DL180 G5 and 4 IBMquipment, i.e. cameras, and the IT sub-systems is wedidest
x3650 7979. In both cases we used the synchronisatiamd works quite reliably. Tests to compare NTP versus PTP
software’s own status reporting tools to observe the clookt revealed that both services can synchronise the PC clocks
offset on every machine at regular intervals. This is not tlie an accuracy that is within an acceptable tolerance far thi
best way to obtain objective measurements, so the reselts application. The restriction with NTP is that it needs a long
merely indicative. time to settle and so would not be suitable for systems tleat ar

. . .shut down and booted up on purpose, for example in a mobile
In the NTP setup, all machines shared the same conflguratlg eblication outside a stupdio. pPTFI)3 on the otherphand is quick
I

the departmental NTP master was used as a reference se’\i Lynchronise a group of computers sharing one network

_and "."” the machines in the cluster were declgred as pees. witch or hub, and achieves closer synchronisation. Homyeve
IS quite SIOW to converge. After 24 hours running t_he peakkpeit does not work over a wider area network, so NTP is still the
time disparity between the servers was held within 1ms. protocol of choice here. PTP is not yet as established as NTP,
In the PTP setup, NTP was used to synchronise one machivigich is installed by default with many operating systems.
:ﬁethoe gﬁpsaﬂ::;eem?mﬁ%’eaﬁthe[lrg]mti'Zmr?chmriz?sl,ge; ﬁ%g implemented, distributed real-time processing sysgem
local r:naster PTIE cgnver es much more y Kiv. It 100k | véry flexible and allows integration of new hardware and

L 9 . - quickly. Tt ToOK ‘e8Bsware components. This integration is relatively easg d
than 30 minutes for the peaktpealf “”."'e dlsparlty to fall HSIeto the use of the high-level programming language Python and
than 25us. Thereafter the disparity is typically aroundleHhe Kamaelia framework
occasionally rising to 25ps. '

] The discussed application of real-time free-viewpointtoep

5.3 Processing and rendering is ongoing work and mainly used here to

The system was used to compute a 3D reconstruction fromd&monstrate the concepts of the distributed system. Furthe
cameras, in a setup as described above. The image proced§Rgarch will examine the effect of texture compression on
(YUV to RGB conversion, chroma-keying) is running at fulfn® overall end-to-end latency (from capture to renderofg)
frame-rate (25 fps) on the capture server and passes oratais this IT based sy;tem. Our |mmed|ate. mteres.t is in achieving
to another workstation that computes the 3D reconstructi#fil-time rendering of reconstructed views using a tenijyora
(visual hull). At the current state an octree with a resofuti @nd spatially consistent view-dependent texturing atgori

of 64 x 64 x 64 (with 1-times super-sampling) is computed in

real-time. This quality is good enough for preview purposss 7 Acknowledgements

shown in figure 5. Recent work is looking into optimising th

code to improve speed. q’hls work has been funded by the UK TSB as part of the

i3DLive project.

References

[1] Real-time DXT compression; NVIDIA texture
tools. http://code.google.com/p/nvidia-texture-
tools/wiki/Real TimeDXTCompression.

[2] David M. Beazley and William Fulton. SWIG.
http://www.swig.org/.

= [3] E. Borovikov and L. Davis. A distributed system for real-
=Y time volume reconstruction. IGAMP *00: Proceedings
of the Fifth IEEE International Workshop on Computer
Architectures for Machine Perception (CAMP’00), page
183, Washington, DC, USA, 2000. IEEE Computer

Figure 5: Reconstructed mesh with simple texturing and
wireframe of the mesh.

Society.
[4] Pat Brown. EXTtexturecompressiors3tc
6 Conclusions Version 1.5. http://opengl.org/registry/specs/EXT/

texturecompressiors3tc. txt.
In this paper a software and hardware framework for the
implementation of distributed processing applicationgw@is [5] Simon Brown. http://code.google.com/libsquish/.

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

Chris Buehler, Michael Bosse, Leonard McMillan[19]
Steven J. Gortler, and Michael F. Cohen. Unstructured
lumigraph rendering. In Eugene Fiume, editor,
SIGGRAPH 2001, Computer Graphics Proceedings,
pages 425-432. ACM Press / ACM SIGGRAPH, 2001.120]

Kamaelia Contributors. Kamaelia - concurrency made
useful, fun. http://www.kamaelia.org/.

George Coulouris, Jean Dollimore, and Tim Kindbergp1]
Distributed Systems: Concepts and Design. Addison-
Wesley, 2001.

Irmen de Jong. pyro - Python Remote Objects.
http://www.xs4all.nl/ irmen/pyro3/.

Paul E. Debevec, George Borshukov, and Yizhou YLZ.Z]
Efficient view-dependent image-based rendering with
projective texture-mapping. IAroc. of 9th Eurographics

Rendering Workshop, Vienna, Austria, June 1998. [23]

Oliver Grau. A 3D production pipeline for special
effects in tv and film. InMirage 2005, Computer
Vision/Computer Graphics Collaboration Techniques

and Applications, Rocquencourt, France, March, 2005[.2 4]
INRIA.

Oliver Grau, Tim Pullen, and Graham A. Thomas.
combined studio production system for 3-d capturin
of live action and immersive actor feedbacklEEE
Transactions on Circuits and Systems for \Mideo
Technology, 14(3):370-380, March 2004.

5]

Oliver Grau, Graham A. Thomas, A. Hilton, J.Kilner, and
J.Starck. A robust free-viewpoint video system for sport
scenes. IProc. of 3DTV-Conference, Kos island, Greece,
May 2007.

Celso Kurashima, Ruigang Yang, and Anselmo Lastra.
Combining approximate geometry with view-dependent
texture mapping - a hybrid approach to 3D video
teleconferencing. InProceedings of XV Brazlian
Symposiumon Computer Graphics and |mage Processing
(SBGRAPI 2002), pages 112-119, Fortaleza-CE, Brazil,
October 2002.

George Neville-Neil and Steven Kreuzer. PTPd.
http://ptpd.sourceforge.net/.
EBU/SMPTE Task Force on Timing and

Synchronization. Request for standardization. Technical
report, EBU/SMPTE, August 2009.

P. Rander, P.J. Narayanan, and T. Kanade. Virtualized
reality: Constructing time-varying virtual worlds from
real events. InProceedings of IEEE Visualization *97,
pages 277-283, October 1997.

Luc Renambot, Byungil Jeong, and Jason Leigh. Real-
time compression for high-resolution content. In
Proceedings of the Access Grid Retreat 2007, Chicago,

IL, 2007. University of lllinois at Chicago.

William R. Sherman and Alan B. CraidJnderstanding
Virtual Reality: Interface, Application, and Design.
Morgan Kaufmann, 2002.

Graham A. Thomas. Real-time camera pose estimation
for augmenting sports scenes. RProc. of 3rd European
Conf. on Visual Media Production (CVMP2006), pages
10-19, London, UK, November 2006.

Graham A. Thomas, J. Jin, T. Niblett, and Urquhart.
A versatile camera position measurement system for
virtual reality tv production. InConference Proc. of
International Broadcasting Convention, pages 284—289,
Sept. 1997.

P.N. Tudor and S.H. Cunningham. Improving workflow
in practice for low-cost programme-making using mxf &
aaf file formats. IrProc. of NAB, 2006.

M. Valera and S. A. Velastin. Intelligent distributed
surveillance systems: A review.|EE Proceedings -
Vision, Image and Signal Processing, 152(2):192-204,
April 2005.

J.M.P. van Waveren. Real-time DXT compression. May
2006.

lan Wesley-Smith, Mil8 LiSka, and Petr Holub.
Implementation of DXT compression for UltraGrid.
Technical Report 4, CESNET, June 2008.

