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Abstract

This contribution describes a distributed multi-camera capture
and processing system for real-time media production
applications. Its main design purpose is to allow prototyping
of distributed processing algorithms for free-viewpoint
applications, but the concept can be adapted to other (multi-
camera) applications. The system integrates broadcast
components into a distributed IT-based processing system.
The problems that are addressed in this contribution are the
synchronisation of these sub-systems and the data and control
flow.

For the synchronisation of the broadcast and IT components
we developed a time stamp mechanism based on tightly
synchronised PC clocks. This time is used as the master
clock of the system. The video frames from the gen-locked
multi-camera streams are implicitly synchronised by adjusting
their relative timing against this system clock. For the purpose
of synchronising the PC clocks two protocols (NTP and
PTP) were evaluated. The second main contribution is the
processing of multi-camera data in the distributed system. For
this purpose a software framework was developed based on a
distributed concurrency system implemented in Python.

1 Introduction

This contribution describes a system for distributed multi-
camera capture and processing. The motivation for this
development was to design a framework that allows
the development and testing of multi-camera real-time
applications for broadcast. In particular this includes capture
of stereoscopic 3D and wide-baseline images for free-
viewpoint applications in special effects (e.g. [17, 13]). The
design goals for the system were to provide a framework that
allows the implementation and test of new algorithms for
these applications in a broadcast environment. The emphasis
was to create a system for prototyping, that means the ability
to quickly test new image processing and 3D algorithms.
The concepts and most components could also be used for
production systems and could be combined e.g. with tools for
tape-less production [22].

Distributed systems are mostly designed to decompose a
computational task and delegate the computational load onto
a number of sub-systems in order to reduce the computation

time. A number of paradigms and systems have been
developed to achieve this (see for example [8]). Existing
approaches use for example loosely coupled PC clusters or
tighter coupled multi-processor systems as a general solution
to this problem.

Some of these approaches can be successfully applied to off-
line processing for media applications, but usually do not
address the real-time requirements in broadcast. Virtual reality
(VR) systems [19] on the other hand do address real-time
aspects, but usually on a different level: they are usually
designed towards a low system latency, as the system reaction
is important to give the user a feeling of immersion. The
achieved frame rate of produced imagery is not so critical, as
long as it does not fall below a certain threshold. Broadcast
systems on the contrary require the ability to deliver imagery
at a given frame rate (50/60 fps).

Further, VR systems are designed to distribute 3D data. Our
application scenario requires processing and transmission of
real camera data. This is also an issue in distributed camera
systems for surveillance applications [23]. Architectures found
in this field have similar requirements to our system, but their
main goal is usually to extract high level semantic information
about the scene. In contrast to that broadcast applications
require, at least on the production side, a high standard of video
quality to be passed through the entire system chain. The image
quality is usually guaranteed by processing uncompressed or
near-loss-less compressed video on the production side (see for
example [22]).

An approach to combine features of VR and broadcast
production systems was the subject of our previous work [12].
This system provides basically two main functionalities for
the production of special effects: firstly, video from a number
of (standard definition) cameras can be captured and stored
to disk in uncompressed quality. Secondly, the images can
be processed in real-time to generate a 3D reconstruction of
the action. The real-time generated 3D model of the action
was then used in a renderer together with (optional) virtual
components to generate a live preview of the composited scene
and in a view-dependent actor feedback system. This was
demonstrated with a frame rate of approximately 10 fps for the
3D reconstruction, which is just good enough to make creative
decisions on set. The final quality output was then generated
from the stored video using an offline process (see also [11]).

In our recent work we are aiming to generate visual effects in
real-time. This paper describes the challenges and the system
framework we developed to implement this functionality. The



two main contributions of this paper are the newly developed
synchronisation of broadcast equipment (the cameras) with
commodity IT based components, and the software framework
that allows distributed processing. Both aspects will be
described in section 3.

The following section gives a brief overview of the system.
Section 4 describes the implementation of a free-viewpoint
capture and rendering system based on our framework. In
section 5 we present some results and the paper finishes with
some concluding remarks.

2 System Overview
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Figure 1: System overview. Each camera (Cam-1..Cam-N) is
connected to a capturing server (Cap-1..Cap-N).

This section gives a brief overview of the hardware and
software components of the system. Figure 1 is a schematic
diagram of the component parts. The blocks represent
functional modules and not necessarily physical devices.
For example each camera (Cam-1..Cam-N) is assigned to a
(logical) capture server. Physically the capture servers are
implemented using IT components, i.e. a rack-mounted PC.
This PC can host a number of logical capture servers. In
our recent configuration we built up a studio system with
a number of HD cameras (Sony HDC-X300 and Canon
XL H1) connected via HD-SDI link to the PCs. Currently two
HD-streams are captured on one PC, that means two logical
capture servers are running on the same hardware system.

The communication and data exchange between these
components is based upon a local area network. This concept
provides a cost-effective way of implementing a system which
can be easily configured to suit particular requirements. For
example the number of cameras can be varied depending on
the available space in the studio and the specific production
needs.

Usually the cameras are fixed and their parameters are
determined with a calibration procedure. In addition, cameras
equipped with a real-time tracking system or robotic controlled
cameras can be used, as shown for Cam-N in figure 1.

One challenge in the integration of broadcast equipment into
a predominantly IT based system is the time synchronisation
of both sub-systems. Broadcast equipment traditionally uses
a reference video signal to synchronise (or ‘genlock’) video

sources such as cameras, and a time-code signal to allow
recordings to be time aligned. The use of time-code often
requires extra connections or devices to embed the time signal
in the video stream. We avoid the use of time-code by tightly
synchronising the IT components’ clocks, then using them as
a distributed time reference. These concepts are describedin
more detail in the next section.

Further, processing modules are implemented as distributed
services on the IT system. Details are also explained in the
next section.

3 A distributed multi-camera processing framework

As in our earlier system [12], the output of each camera is
captured by a commodity PC equipped with a video capture
card and a disk array. Unlike the earlier system, we are now
capturing uncompressed high definition (HD) video1. Each PC
has a dual channel capture card, so can capture the outputs of
two cameras. The PCs typically have 6 disk drives: one is used
for the operating system and software, and the remaining five
are configured as a RAID0 array. Using 500GByte drives we
can store in excess of six hours (or three hours for two channel
capture) which is enough time for even longer (experimental)
shooting sessions.

3.1 Synchronisation

In our earlier system we used RS232 serial connections to
send trigger signals to each capture PC. This requires each
PC to have an RS232 interface. This increases the number
of interconnections between machines (distribution amplifiers
may also be needed) and has not proved to be reliable enough
for use in a production environment. In the current system
we make use of tightly synchronised PC system clocks, for
example instructing all servers to start capturing at the same
time instant. The PCs are synchronised using either the
well known Network Time Protocol (NTP) or the IEEE 1588
Precision Time Protocol (PTP). The EBU/SMPTE task force
on timing and synchronization [16] has proposed using PTP
to synchronise future audio/video hardware to within 1µs. A
disadvantage of PTP is that all the machines must be connected
to the same ethernet switch or hub, but this is not a problem in
a typical studio setup.

As usual in TV production, all the cameras are ‘genlocked’
to a common source of video synchronisation signals. This
ensures that the video outputs of the cameras are synchronised,
so the PCs’ clocks only need to be synchronised to an accuracy
of a few milliseconds. If the cameras have different internal
processing delays, then although they are genlocked they will
capture frames at different times. This can be compensated for
by adding or subtracting a suitable offset to the PC’s clock time
to generate a true capture time. Any difference between video
capture cards can also be compensated for. This flexibility
would be harder to achieve with the simple synchronisation line
approach.

11920 x 1080 pixels, 8 bit in 4:2:2 YUV at 25 frames per second



The time offset between different camera channels is found
experimentally by capturing a short clip of a clapperboard,then
manually examining the recordings of each camera to find the
frame number where the clapper closed. This sets the timing
to frame accuracy – finer adjustments can be made to some
cameras by setting their genlock offset. Making this adjustment
would require a more sophisticated ‘clapperboard’, such asa
row of LEDs that light up in sequence at millisecond intervals.

Every video frame is given a timestamp that represents the
actual clock time when the camera captured that image, in
milliseconds since the UNIX epoch – 1st January 1970. This
timestamp, and other ‘metadata’, accompanies the frame (and
anything derived from it, such as moving camera parameters or
a 3D model) through the entire system, and allows components
receiving feeds from several camera channels to be confident
that they are synchronised. This is similar to, but simpler than,
the time related labeling (TRL) proposed by the EBU/SMPTE
task force.

3.2 Circular buffer

With the ever decreasing cost of computer memory it has
become quite reasonable to store several seconds of video in
a PC’s main memory. Such a buffer is useful when recording
uncompressed video to disk – the data stream can be divided
into suitably sized blocks, and any timing variations (e.g.disk
seeking) can be accommodated. Using a large circular buffer
gives us another advantage – we can start a recording a couple
of seconds before the system operator hits the “record” button.
This is a useful feature, for example to record incidents in
sports games. Each capture process continually stores the most
recent 300 frames, and their time stamps, in memory. When
the operator presses “record”, a time stamp two seconds into
the past is sent to the capture servers. They then record to disk
every frame in the buffer that has a later time stamp.

3.3 Software framework

The system software is implemented using Python and C/C++.
Python’s scripting and high-level language concept enables
rapid development and easy experimentation, both desirable
in an experimental system. The actual “number crunching”
required to process video is programmed in C or C++, which is
interfaced to Python using SWIG [2]. Python interfaces to the
capture card’s SDK are also generated by SWIG.

A natural paradigm for video and graphics processing is a
pipeline of components, each performing a simple task but
combining to form a complex system. Well known examples of
this are UNIX pipes and Microsoft’s DirectShow framework.
We use the Kamaelia framework [7] to create and connect
such components. This framework is designed to simplify the
implementation of concurrent systems.

A Kamaelia component is conceptually quite simple. After
initialisation it enters a loop, waiting for messages to appear
in any of its ‘inboxes’. These messages typically representa
unit of work, such as a video frame to be processed. After
completion of the work, any output is placed in one or more

of the component’s ‘outboxes’. The Kamaelia system picks up
the message and delivers it to the next component.

Figure 2: Distribution of video from frame grabber to
multiple destinations.

Components can be connected together to form quite complex
systems. They can also be dynamically created and destroyed.
Figure 2 shows the core of our capture server process. At the
top is a Kamaelia ‘Backplane’ component called “FRAMES”.
This provides easy distribution of video to any number of
‘SubscribeTo’ components, which can be created as required.
Frames are sent to the backplane by a ‘PublishTo’ component
that receives them from a video grabber component.

There are two server task pipelines active in figure 2: one that
writes video to disk and one that sends reduced size video to
a remote client via a TCP socket. This latter task is used by a
controller GUI that has multiple video windows, each showing
live video from a different camera, as shown in figure 3.
The server creates pipelines like these in response to requests
from client applications. We are using Pyro (Python Remote
Objects) [9] for this client-server communication. Pyro isa
lightweight system that is well suited to this application.

Unlike our earlier system [12], where video frames (or
processed frames such as key signals) were “pulled” from the
capture servers by other parts of the system in a client-server
model, we are using a “push” model: the capture servers
send frames continuously to any process that has requested
them. This minimises latency and reduces the likelihood of
deadlocks in the system.

3.4 Strategies to cope with frame-drops

In any system as complex as this, with up to a dozen channels
of HD video being captured to disk, processed and passed over
networks between PCs, some thought needs to be given to what
happens when network congestion or processor overload leads
to some frames being dropped.



Figure 3: A simple GUI client controlling 12 camera
channels.

For example, the computation of a visual hull should use
silhouettes derived from all camera channels. If any of those
channels drops a frame, the visual hull computation would be
incomplete for that time instance. Two strategies would be
possible here: either a degraded visual hull could be computed
from the available silhouettes, or the computation could be
dropped entirely, skipping that time instant.

This latter strategy could fail if several camera channels were
dropping frames: if each channel drops different time instants
there may never be a complete set from which to compute the
visual hull. The solution is to ensure that each channel chooses
to drop the same time instants. This is achieved by using the
same frame dropping strategy in every component, where the
choice of which frame to drop is based on the frames’ time
stamps.

In any case the server records the full video rate to (local) disk,
so only live ’preview’ quality processing is affected by network
congestion. Final non real time processing has the full video
signal available.

4 Implementation of a free-viewpoint capture and
rendering system

This section describes the implementation of a distributed
3D reconstruction and free-viewpoint rendering system using
Image-based Rendering (IBR) techniques. The emphasis is on
describing the system aspects and not so much the algorithmic
side of the implemented methods2. Although the system was
designed for this application scenario it can be viewed as
an example since other classes of applications could also be
implemented with the system architecture.

The image and 3D processing consists of the following steps or
modules:

1. camera calibration
2. image segmentation
3. 3D reconstruction

2more detail on aspects of the algorithms can be found in [12]

4. texture computation / preparation
5. rendering

The following gives a brief description of the implementation
of these modules and how they are integrated into the
distributed system.

4.1 Camera setup and calibration

As described, the system is very scalable with respect to
the number of cameras used. The cameras can be arranged
in an inhomogeneous, unstructured setup, allowing for
example varying object distances, baselines, focal lengths or
sensor sizes and resolutions. Calibration is achieved using
a large planar calibration target (chart calibration) thatis
recorded in various poses to cover the whole volume used for
reconstruction. Static cameras are calibrated once beforea
capture session. For non-static cameras a live calibrationis
used with techniques described in [20, 21].

4.2 Image processing and 3D Reconstruction

The 3D reconstruction uses an octree-based visual hull
algorithm as presented in [12]. The visual hull algorithm
relies on calibrated cameras and object silhouettes, provided
as segmentation images. The silhouettes are acquired through
chroma keying or difference keying. This is computed in
real-time on each capture server. The resulting segmentation is
compressed using run-length encoding and transmitted from
the server to any client via ‘push’ mode.

The 3D reconstruction is implemented on a single PC, that
gathers the camera calibration data and then receives and
decodes the segmentation data. An alternative approach for
distributing the load is described in [3]. In this paper a partial
octree is computed on each capture server and then passed on
to the next. This approach results in a long latency.

4.3 Rendering

The rendering of the final virtual scene requires the
reconstructed 3D mesh and one or more images for texturing.
Both the mesh and the image data change for every frame.
A dedicated rendering PC collates the timestamped inputs
for every frame and renders them using a high-end NVIDIA
QuadroFX 4800 graphics card. The resulting meshes typically
have only a low complexity (compared to the capabilities of
modern graphics hardware) of up to 40K vertices. However,
the texture images are at 1080p HD resolution and require
efficient processing.

To render the virtual view, texture images from original camera
views are used. In the simplest and fastest case the single
best matching original view is calculated based on its relative
position and orientation to the virtual camera. The whole scene
is then textured using only this view’s texture. This approach
can cause temporal artefacts, e.g. strong discontinuities
between consecutive frames when the best matching view
changes. It also does not take care of object areas that were
occluded or not in view in the chosen original view (spatial



artefacts).

In our current setup we use a simple global selection of the
best camera view, based on camera angle deviation and spatial
resolution (using only object distance and sensor resolution).
We aim to incorporate per-polygon blending approaches as in
[6] and [10] in the future.

4.3.1 Improved rendering

To produce more realistic results, more than one view should
be used. One option is to make a global blending of a small
number of the best matching views using multi-texturing. This
approach can take care of occluded or invisible regions, as long
as they are visible in at least one of the chosen views. More
sophisticated approaches were presented in [10] and [14] by
determining the three best views for each individual polygon
and combining them with per-vertex blending weights. The
best views were chosen based only on the angle deviation
between virtual and original cameras. This method however
requires several pre-computations for the mesh, which may
hinder its usage in a real-time environment where the mesh
changes with every frame.

Another approach unifies View-dependent Texture Mapping
and Light Field Rendering techniques in a comprehensive
analysis of the challenges and goals of Image-based Rendering
[6]. This new method, called Unstructured Lumigraph
Rendering, further includes terms for spatial resolution3 and
the field-of-view into the computation of the blending weights.

4.4 Texture Compression

The view-dependent rendering will require more than one HD-
resolution video frame (typically 2 or 3) for every output frame.
With a television frame rate of 25 fps this can put a lot of
traffic on an IP-based network. Image data in uncompressed
YUV format (4:2:2, 8 bit) with 1080p HD resolution amounts
to nearly 100 MByte/s per camera. The rendering should
therefore be restricted to a small number of image inputs, to
avoid unnecessary data transfer costs both over the IP network
and between system memory and graphics card. An additional
option is to apply data compression to the transferred HD
images.

Traditional image compression methods add latency on both
the server side and on the renderer side, for compressing and
decompressing the data, respectively. An alternative approach
would be to use texture compression algorithms such as S3TC
(adopted by Microsoft as DXTC)[4]. DXTC is implemented
in hardware on all modern graphics cards, and therefore adds
only minimal decompression latency on the renderer.

DXTC is a family of lossy compression algorithms. The actual
output quality, speed and compression ratio depend on the used
algorithm. For RGBA content DXT1 offers a 6:1 compression

3The spatial resolution depends on intrinsic camera parameters, such as
sensor resolution and focal length, and on extrinsic camera parameters, such as
object distance and obliqueness relative to the imaged surface [6].

ratio, whereas DXT3 and DXT5 have a 4:1 ratio. Due to its
lower complexity, DXT1 is best-suited as a basis for real-time
applications.

Initial tests with an open-source implementation [5] of the
DXT1 algorithm showed that on the server side an encoding
frame rate of 10 fps is achievable on an Intel i7 machine. This
is however not enough to allow use in a real-time system.

A DXT-compatible texture compression algorithm for
real-time applications was first presented in [24]. Further
improvements with focus on high resolution material promise
HD frame rates of up to 100 fps on modern Intel Xeon
machines [18]. Experiments on latency in an IP-based HD
transmission system (also using Centaurus II capture cards)
showed that this improved DXT1 algorithm adds only about
10ms to the overall system latency [25].

Finally, DXTC algorithms using GPU-acceleration promise
even higher compression speeds [1]. But adding a dedicated
GPU to every capture server was deemed to be impractical,
especially because of the additional latency when transferring
data back from the GPU.

5 Results

5.1 Studio setup

The camera setup used in the following tests is comprised of 11
HD cameras and 1 SD camera. The HD cameras are arranged
in a circle inside the TV studio at various heights between 1 m
and 5 m, with the additional SD camera looking straight down
on the scene from a height of 5.5 m. The angle between the
HD cameras varies between 17 and 65 degrees and their object
distances vary from 2 m to 5 m. Figure 4 shows four views of
a captured studio scene.

Image segmentation is achieved with chroma keying on blue.
The studio floor and walls are covered in retro-reflective cloth,
which is illuminated by rings of blue LEDs that are arranged
around each camera lens [12].

Figure 4: Images captured with the same timestamp.



5.2 Synchronisation

We compared the synchronisation capabilities of PTP and
NTP on our cluster of 8 video capture servers – 3 Dell
PowerEdge 2950, 1 HP ProLiant DL180 G5 and 4 IBM
x3650 7979. In both cases we used the synchronisation
software’s own status reporting tools to observe the clock time
offset on every machine at regular intervals. This is not the
best way to obtain objective measurements, so the results are
merely indicative.

In the NTP setup, all machines shared the same configuration:
the departmental NTP master was used as a reference server,
and all the machines in the cluster were declared as peers. NTP
is quite slow to converge. After 24 hours running the peak-peak
time disparity between the servers was held within 1ms.

In the PTP setup, NTP was used to synchronise one machine
to the departmental master, and the remaining machines used
the open source programme PTPd [15] to synchronise to this
local master. PTP converges much more quickly. It took less
than 30 minutes for the peak-peak time disparity to fall to less
than 25µs. Thereafter the disparity is typically around 10µs,
occasionally rising to 25µs.

5.3 Processing

The system was used to compute a 3D reconstruction from 11
cameras, in a setup as described above. The image processing
(YUV to RGB conversion, chroma-keying) is running at full
frame-rate (25 fps) on the capture server and passes on this data
to another workstation that computes the 3D reconstruction
(visual hull). At the current state an octree with a resolution
of 64 x 64 x 64 (with 1-times super-sampling) is computed in
real-time. This quality is good enough for preview purposes, as
shown in figure 5. Recent work is looking into optimising the
code to improve speed.

Figure 5: Reconstructed mesh with simple texturing and
wireframe of the mesh.

6 Conclusions

In this paper a software and hardware framework for the
implementation of distributed processing applications using

multiple cameras in a broadcast production environment was
described.

The developed time synchronisation between broadcast
equipment, i.e. cameras, and the IT sub-systems is well tested
and works quite reliably. Tests to compare NTP versus PTP
revealed that both services can synchronise the PC clocks
to an accuracy that is within an acceptable tolerance for this
application. The restriction with NTP is that it needs a long
time to settle and so would not be suitable for systems that are
shut down and booted up on purpose, for example in a mobile
application outside a studio. PTP on the other hand is quick
to synchronise a group of computers sharing one network
switch or hub, and achieves closer synchronisation. However,
it does not work over a wider area network, so NTP is still the
protocol of choice here. PTP is not yet as established as NTP,
which is installed by default with many operating systems.

The implemented, distributed real-time processing systemis
very flexible and allows integration of new hardware and
software components. This integration is relatively easy due
to the use of the high-level programming language Python and
the Kamaelia framework.

The discussed application of real-time free-viewpoint capture
and rendering is ongoing work and mainly used here to
demonstrate the concepts of the distributed system. Further
research will examine the effect of texture compression on
the overall end-to-end latency (from capture to rendering)of
this IT based system. Our immediate interest is in achieving
real-time rendering of reconstructed views using a temporally
and spatially consistent view-dependent texturing algorithm.
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Implementation of DXT compression for UltraGrid.
Technical Report 4, CESNET, June 2008.




