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Abstract 

Reed-Solomon error correction has several applications in broadcasting, in 
particular forming part of the specification for the ETSI digital terrestrial 
television standard, known as DVB-T. 

Hardware implementations of coders and decoders for Reed-Solomon error 
correction are complicated and require some knowledge of the theory of Galois 
fields on which they are based.  This note describes the underlying mathematics 
and the algorithms used for coding and decoding, with particular emphasis on 
their realisation in logic circuits.  Worked examples are provided to illustrate the 
processes involved. 
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1 Introduction 
Many digital signalling applications in broadcasting use Forward Error Correction, a technique in 
which redundant information is added to the signal to allow the receiver to detect and correct errors 
that may have occurred in transmission.  Many different types of code have been devised for this 
purpose, but Reed-Solomon codes [1] have proved to be a good compromise between efficiency 
(the proportion of redundant information required) and complexity (the difficulty of coding and 
decoding).  A particularly important use of a Reed-Solomon code for television applications is in 
the DVB-T transmission standard [2].  

Hitherto, modulators and demodulators for DVB-T have, in general, used custom chips to provide 
the Reed-Solomon encoding and decoding functions.  However, there are circumstances (such as 
for digital radio cameras) where it would be beneficial to include these processes in gate array 
designs for the transmitter and receiver.  This would then provide the flexibility to modify the 
encoding parameters to suit the particular requirements of the radio camera application without 
sacrificing the compactness of single-chip implementation.  Although custom core designs for gate 
arrays are available, the charges are significant and can complicate further exploitation of the 
intellectual property embodied in a design. 

Although Reed-Solomon codes are described in many books on coding theory and have been the 
subject of many journal papers, the description of the hardware techniques involved is generally 
superficial, if described at all.  The principal aim of this paper is to provide the basic information 
needed for the design of hardware implementations of Reed-Solomon coders and decoders, 
particularly those for the DVB-T system. 

The mathematical basis for Reed-Solomon codes is complicated, but it is necessary to have a 
reasonable understanding of at least what needs to be done, if not why it is done.  Therefore this 
paper first provides some essential background to the theory of Reed-Solomon codes and the Galois 
field arithmetic on which the codes are based.  Then the process of encoding is described, first 
mathematically and then in terms of logic circuits.  This is followed by an explanation of the basis 
of error correction and then by some of the decoding algorithms commonly applied in error 
correction hardware.  Although some proofs are included, some results are just stated as a means of 
controlling the length of the document.  At each stage, the techniques used are illustrated with 
worked examples. 
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2 Background Theory 

2.1 Classification of Reed-Solomon codes 
There are many categories of error correcting codes, the main ones being block codes and 
convolutional codes.  A Reed-Solomon code is a block code, meaning that the message to be 
transmitted is divided up into separate blocks of data.  Each block then has parity protection 
information added to it to form a self-contained code word.  It is also, as generally used, a 
systematic code, which means that the encoding process does not alter the message symbols and the 
protection symbols are added as a separate part of the block.  This is shown diagrammatically in 
Figure 1. 

code word (n symbols)

original message (k symbols)
parity

(n-k=2t symbols)

symbol
(m bits)

 
Figure 1 - Reed-Solomon code definitions 

Also, a Reed-Solomon code is a linear code (adding two code words produces another code word) 
and it is cyclic (cyclically shifting the symbols of a code word produces another code word).  It 
belongs to the family of Bose-Chaudhuri-Hocquenghem (BCH) codes [3, 4], but is distinguished by 
having multi-bit symbols.  This makes the code particularly good at dealing with bursts of errors 
because, although a symbol may have all its bits in error, this counts as only one symbol error in 
terms of the correction capacity of the code. 

Choosing different parameters for a code provides different levels of protection and affects the 
complexity of implementation.  Thus a Reed-Solomon code can be described as an (n, k) code, 
where n is the block length in symbols and k is the number of information symbols in the message.  
Also 

n ≤ 2m - 1 .... (1) 

where m is the number of bits in a symbol.  When (1) is not an equality, this is referred to as a 
shortened form of the code.  There are n-k parity symbols and t symbol errors can be corrected in a 
block, where 

t = (n-k)/2               for n-k even 

or 

t = (n-k-1)/2            for n-k odd. 

Unfortunately, the notation used in the literature on error correcting codes, although generally 
similar, is not universally consistent.  Although the notation used here is representative of that used 
elsewhere, the reader should be aware that confusing differences in terminology can arise.  It is 
therefore particularly important to be clear about how the parameters of a code are specified. 
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2.2 Galois fields 
To proceed further requires some understanding of the theory of finite fields, otherwise known as 
Galois fields after the French mathematician. 

2.2.1 Galois field elements 
A Galois field consists of a set of elements (numbers).  The elements are based on a primitive 
element, usually denoted α, and take the values: 

0, α0, α1, α2, .... , αN-1 .... (2) 

to form a set of 2m elements, where N=2m - 1.  The field is then known as GF(2m). 

The value of α is usually chosen to be 2, although other values can be used.  Having chosen α, 
higher powers can then be obtained by multiplying by α at each step.  However, it should be noted 
that the rules of multiplication in a Galois field are not those that we might normally expect.  This is 
explained in Section 2.2.5. 

In addition to the powers of α form, shown in (2), each field element can also be represented by a 
polynomial expression of the form: 

01
1

1 .... axaxa m
m +++−

−  

where the coefficients am-1 to a0 take the values 0 or 1.  Thus we can describe a field element using 
the binary number am-1 .... a1a0 and the 2m field elements correspond to the 2m combinations of the 
m-bit number. 

For example, in the Galois field with 16 elements (known as GF(16), so that m=4), the polynomial 
representation is: 

0
0

1
1

2
2

3
3 xaxaxaxa +++  

with a3a2a1a0 corresponding to the binary numbers 0000 to 1111.  Alternatively, we can refer to the 
field elements by the decimal equivalents 0 to 15 as a short-hand version of the binary numbers. 

Arithmetic in a finite field has processes of addition, subtraction, multiplication and division, but 
these differ from those we are used to with normal integers.  The effect of these differences is that 
any arithmetic combination of field elements always produces another field element. 

2.2.2 Galois field addition and subtraction 
When we add two field elements, we add the two polynomials: 

0
0

1
1

1
1

0
0

1
1

1
1

0
0

1
1

1
1 ....)....()....( xcxcxcxbxbxbxaxaxa m

m
m

m
m

m +++=+++++++ −
−

−
−

−
−  

where 

ci = ai + bi                    for 0 ≤ i ≤ m-1. 

However, the coefficients can only take the values 0 and 1, so 

ci = 0                  for ai = bi 

and 

ci = 1                  for ai ≠ bi .... (3) 

Thus two Galois field elements are added by modulo-two addition of the coefficients, or in binary 
form, producing the bit-by-bit exclusive-OR function of the two binary numbers. 



 

 4 

For example, in GF(16) we can add field elements x3 + x and x3 + x2 + 1 to produce x2 + x + 1.  As 
binary numbers, this is: 

1010 + 1101 = 0111 

or as decimals 

10 + 13 = 7 

which can be seen from: 

 1010 (10) 
 1101 (13) 
 0111  (7) 
Because of the exclusive-OR function, the addition of any element to itself produces zero.  So we 
should not be surprised that in a Galois field: 

2 + 2 = 0. 

Table 7 in Appendix 8.3 provides a look-up table for additions in GF(16). 

Subtraction of two Galois field elements turns out to be exactly the same as addition because 
although the coefficients produced by subtracting the polynomials take the form: 

ci = ai - bi                             for 0 ≤ i ≤ m-1 

the resulting values for ci are the same as in (3).  So, in this case, we get the more familiar result: 

2 - 2 = 0 

and for our other example: 

10 - 13 = 7. 

It is useful to realise that a field element can be added or subtracted with exactly the same effect, so 
minus signs can be replaced by plus signs in field element arithmetic. 

2.2.3 The field generator polynomial 
An important part of the definition of a finite field, and therefore of a Reed-Solomon code, is the 
field generator polynomial or primitive polynomial, p(x). This is a polynomial of degree m which is 
irreducible, that is, a polynomial with no factors.  It forms part of the process of multiplying two 
field elements together.  For a Galois field of a particular size, there is sometimes a choice of 
suitable polynomials.  Using a different field generator polynomial from that specified will produce 
incorrect results. 

For GF(16), the polynomial 

1)( 4 ++= xxxp  .... (4) 

is irreducible and therefore will be used in the following sections.  An alternative which could have 
been used for GF(16) is  

1)( 34 ++= xxxp . 

2.2.4 Constructing the Galois field 
All the non-zero elements of the Galois field can be constructed by using the fact that the primitive 
element α is a root of the field generator polynomial, so that  
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p(α) = 0. 

Thus, for GF(16) with the field generator polynomial shown in (4), we can write: 

α4 + α + 1 = 0 

or 

α4 = α + 1 (remembering that + and − are the same in a Galois field). 

Multiplying by α at each stage, using α + 1 to substitute for α4 and adding the resulting terms can 
be used to obtain the complete field as shown in Table 1.  This shows the field element values in 
both index and polynomial forms along with the binary and decimal short-hand versions of the 
polynomial representation. 

If the process shown in Table 1 is continued beyond α14, it is found that α15 = α0, α16 = α1, .... so 
that the sequence repeats with all the values remaining valid field elements. 

 

index 
form 

polynomial 
form 

binary 
form 

decimal 
form 

0 0 0000 0 
α0 1 0001 1 
α1 α 0010 2 
α2 α2 0100 4 
α3 α3 1000 8 
α4 α + 1 0011 3 
α5 α2 + α 0110 6 
α6 α3 + α2 1100 12 
α7 α3 + α + 1 1011 11 
α8 α2 + 1 0101 5 
α9 α3 + α 1010 10 
α10 α2 + α + 1 0111 7 
α11 α3 + α2 + α 1110 14 
α12 α3 + α2 + α + 1 1111 15 
α13 α3 + α2 + 1 1101 13 
α14 α3 + 1 1001 9 

 

Table 1 - The field elements for GF(16) with p(x) = x4 + x + 1 

2.2.5 Galois field multiplication and division 
Straightforward multiplication of two polynomials of degree m-1 results in a polynomial of degree 
2m-2, which is therefore not a valid element of GF(2m).  Thus multiplication in a Galois field is 
defined as the product modulo the field generator polynomial, p(x).  The product modulo p(x) is 
obtained by dividing the product polynomial by p(x) and taking the remainder, which ensures that 
the result is always of degree m-1 or less and therefore a valid field element. 

For example, if we multiply the values 10 and 13 from GF(16) represented by their polynomial 
expressions, we get: 

xxxx
xxxxxxxxxx

+++=
+++++=+++

456

34356233 )1)((  .... (5) 
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To complete the multiplication, the result of (5) has to be divided by x4 + x + 1. 

 Division of one polynomial by another is similar to conventional long division.  Thus it consists of 
multiplying the divisor by a value to make it the same degree as the dividend and then subtracting 
(which for field elements is the same as adding).  This is repeated using the remainder at each stage 
until the terms of the dividend are exhausted.  The quotient is then the series of values used to 
multiply the divisor at each stage plus any remainder left at the final stage. 

This can be shown more easily by arranging the terms of the polynomials in columns according to 
their significance and then the calculation can be made on the basis of the coefficient values (0 or 1) 
as shown below. 

 x6 x5 x4 x3 x2 x1 x0  
dividend: 1 1 1 0 0 1 0 
divisor × x2: 1 0 0 1 1 
  1 1 1 1 1 
divisor × x:  1 0 0 1 1 
   1 1 0 0 0 
divisor × 1:   1 0 0 1 1 
    1 0 1 1 
So the quotient is x2 + x + 1 and the remainder, which is the product of 10 and 13 that we were 
originally seeking, is x3 + x + 1 (binary 1011 or decimal 11).  So we can write: 

10 × 13 = 11. 

Table 8 in Appendix 8.3 provides a look-up table for multiplications in GF(16) with the field 
generator polynomial of equation (4). 

Alternatively the process of equation (5) can be performed using the coefficients of the polynomials 
in columns.  First shifted versions of x3 + x are added according to the non-zero coefficients of x3 + 
x2 + 1.  Then, instead of the division process, we can use substitutions taken from Table 1 for any 
non-zero terms that exceed the degree of the field elements and add these as shown: 

 x6 x5 x4 x3 x2 x1 x0  
× x3: 1 0 1 0 
× x2:  1 0 1 0 
× 1:    1 0 1 0 
 1 1 1 0 0 1 0 
x4 = x + 1    0 0 1 1 
x5 = x2 + x    0 1 1 0 
x6 = x3 + x2    1 1 0 0 
    1 0 1 1 
A further alternative technique for multiplication in a Galois field, which is also convenient for 
division, is based on logarithms.  If the two numbers to be multiplied are represented in index form, 
then the product can be obtained by adding the indices modulo 2m-1.  For example, by inspecting 
the values in Table 1 we find: 

10 = α9       and      13 = α13 

so 

10 × 13 = α9 × α13 = α(9+13)mod 15 = α(22)mod 15 = α7. 

Again by inspection using Table 1 we find that: 

α7 = 11 
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giving the result obtained by multiplying the polynomials. 

A slight disadvantage of the logarithmic method is that field element 0 cannot be represented in 
index form.  The method therefore has to sense the presence of zero values and force the result 
accordingly. 

The logarithmic technique can also be used for division: 

11 ÷ 10 = α7 ÷ α9 = α(7-9)mod 15 = α(-2)mod 15 = α13 = 13. 

However, division of two field elements is often accomplished by multiplying by the inverse of the 
divisor.  The inverse of a field element is defined as the element value that when multiplied by the 
field element produces a value of 1 (= α0).  It is therefore possible to tabulate the inverse values of 
the field elements using Table 1. 

For example, 10 = α9, so its inverse is α(-9)mod 15 = α6 = 12 from Table 1.  So we can write: 

11 ÷ 10 = 11 × 12  

and then the product can be calculated by any of the methods above to be 13. 

2.3 Constructing a Reed-Solomon code 
The values of the message and parity symbols of a Reed-Solomon code are elements of a Galois 
field.  Thus for a code based on m-bit symbols, the Galois field has 2m elements.   

2.3.1 The code generator polynomial 
An (n, k) Reed-Solomon code is constructed by forming the code generator polynomial g(x), 
consisting of n-k=2t factors, the roots of which are consecutive elements of the Galois field. 
Choosing consecutive elements ensures that the distance properties of the code are maximised.  
Thus the code generator polynomial takes the form: 

))....()(()( 121 −++ +++= tbbb xxxxg ααα  .... (6) 

It should be noted that this expression is often quoted in the literature with subtle variations to catch 
the unwary.  For example, the factors are often written as (x − αi), which emphasises that g(x) = 0 
when x = αi and those familiar with Galois fields realise that − αi is exactly the same as αi.  Also, 
some choose roots starting with α0 (b=0 in equation 6), while many others start with α, the 
primitive element  (b=1 in equation 6).  While each is valid, it results in a completely different code 
requiring changes in both the coder and decoder operation.  If the chosen value of b is near 2m-1, 
then some of the roots may reach or exceed 12 −m

α .  In this case the index values modulo 2m-1 can be 
substituted.  Small reductions in the complexity of hardware implementations can result by 
choosing b=0, but this is not significant. 

2.3.2 Worked example based on a (15, 11) code   
Specific examples are very helpful for obtaining a full understanding of the processes involved in 
Reed-Solomon coding and decoding.  However, the (255, 239) code used in DVB-T is too unwieldy 
to be used for an example.  In particular, the message length of several hundred symbols leads to 
polynomials with several hundred terms!  In view of this, the much simpler (15, 11) code will be 
used to go through the full process of coding and decoding using methods that can be extended 
generally to other Reed-Solomon codes.  Definition details of the (255, 239) code used for DVB-T 
are shown in Section 2.3.3.   
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For a (15, 11) code, the block length is 15 symbols, 11 of which are information symbols and the 
remaining 4 are parity words.  Because t=2, the code can correct errors in up to 2 symbols in a 
block.  Substituting for n in: 

n = 2m - 1 

gives the value of m as 4, so each symbol consists of a 4-bit word and the code is based on the 
Galois field with 16 elements.  The example will use the field generator polynomial of equation (4), 
so that the arithmetic for the code will be based on the Galois field shown in Table 1. 

The code generator polynomial for correcting up to 2 error words requires 4 consecutive elements 
of the field as roots, so we can choose: 

g(x) = (x + α0) (x + α1) (x + α2) (x + α3) 

 = (x + 1) (x + 2) (x + 4) (x + 8) 

using the index and decimal short-hand forms, respectively. 

This expression has to be multiplied out to produce a polynomial in powers of x, which is done by 
multiplying the factors and adding together terms of the same order.  As multiplication is easier in 
index form and addition is easier in polynomial form, the calculation involves repeatedly converting 
from one format to the other using Table 1.  This is best done with a computer program for all but 
the simplest codes.   Alternatively, we can take it factor by factor and use the look-up tables of 
Appendix 8.3 to give: 

g(x) = (x + 1) (x + 2) (x + 4) (x + 8)  

 = (x2 + 3x + 2) (x + 4) (x + 8) 

 = (x3 + 7x2 + 14x + 8) (x + 8) 

 = x4 + 15x3 + 3x2 + x + 12 .... (7). 

This can also be expressed as: 

g(x) = α0x4 + α12x3 + α4x2 + α0x + α6 

with the polynomial coefficients in index form. 

2.3.3 The code specified for DVB-T 
The DVB-T standard [2] specifies a (255, 239, t=8) Reed-Solomon code, shortened to form a (204, 
188, t=8) code, so that the 188 bytes of the input packet will be extended with 16 parity bytes to 
produce a coded block length of 204 symbols.  For this code, the Galois field has 256 elements 
(m=8) and the polynomial representation of a field element is: 

0
0

1
1

2
2

3
3

4
4

5
5

6
6

7
7 xaxaxaxaxaxaxaxa +++++++  

corresponding to the binary numbers 00000000 to 11111111.  Alternatively, we can use the decimal 
equivalents 0 to 255. 

The specification also mentions the field generator polynomial, given as: 

1)( 2348 ++++= xxxxxp  .... (8). 

This allows us to construct a table of field element values for GF(256) as shown in Table 2.  This 
shows how the field element values can be built up row by row for the 256 element Galois field in a 
similar manner to the construction of Table 1.  At each step the binary number representing the 
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polynomial coefficient values is shifted to the left by one position (equivalent to multiplying by x) 
and 0 is added in the x0 column.  If the shift causes a 1 to be lost at the left-hand side, then 
00011101 is added to the columns, this being the substitution for x8 obtained from the field 
generator polynomial (8) as 

x8 = x4 + x3 + x2 + 1.  

Clearly the full table for this field would be extensive. 

polynomial form index 
form x7 x6 x5 x4 x3 x2 x1 x0 

decimal 

0 0 0 0 0 0 0 0 0 0 
α0 0 0 0 0 0 0 0 1 1 
α1 0 0 0 0 0 0 1 0 2 
α2 0 0 0 0 0 1 0 0 4 
α3 0 0 0 0 1 0 0 0 8 
α4 0 0 0 1 0 0 0 0 16 
α5 0 0 1 0 0 0 0 0 32 
α6 0 1 0 0 0 0 0 0 64 
α7 1 0 0 0 0 0 0 0 128 
α8 0 0 0 1 1 1 0 1 29 
α9 0 0 1 1 1 0 1 0 58 
          
          
α254 1 0 0 0 1 1 1 0 142 

Table 2 - Construction of the Galois field of 256 elements 

The DVB-T specification shows the code generator polynomial as: 

g(x)  = (x+λ0) (x+λ1) (x+λ2) .... (x+λ15) where λ = 02HEX. 

This identifies the primitive element of the Galois field as 2, represented by the symbol λ rather 
than the more usual α, and corresponds to the b=0 version of equation (6). 

When multiplied out, the DVB-T code generator polynomial becomes: 

g(x) =  x16 + 59x15 + 13x14 + 104x13 + 189x12 + 68x11 + 209x10 + 30x9  

  + 8x8 + 163x7 + 65x6 + 41x5 + 229x4 + 98x3 + 50x2 + 36x + 59. 

3 Reed-Solomon Encoding 
The Galois field theory of Section 2 provides the grounding to the processes of Reed-Solomon 
encoding and decoding described in this and the following sections.  In particular, the arithmetic 
processes on which hardware implementations are based rely heavily on the preceding theory. 

3.1 The encoding process 

3.1.1 The message polynomial 
The k information symbols that form the message to be encoded as one block can be represented by 
a polynomial M(x) of order k-1, so that: 

M(x) = Mk-1xk-1 + .... + M1x + M0 
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where each of the coefficients Mk-1, ...., M1, M0 is an m-bit message symbol, that is, an element of 
GF(2m).  Mk-1 is the first symbol of the message. 

3.1.2 Forming the code word 
To encode the message, the message polynomial is first multiplied by xn-k and the result divided by 
the generator polynomial, g(x).  Division by g(x) produces a quotient q(x) and a remainder r(x), 
where r(x) is of degree up to n-k-1.  Thus: 

)(
)()(

)(
)(

xg
xrxq

xg
xxM kn

+=× −

 .... (9) 

Having produced r(x) by division, the transmitted code word T(x) can then be formed by combining 
M(x) and r(x) as follows: 

T(x) = M(x) × xn-k + r(x) 

 = Mk-1xn-1 + .... + M0xn-k + rn-k-1xn-k-1 + .... + r0 

which shows that the code word is produced in the required systematic form. 

3.1.3 Basis for error correction 
Adding the remainder, r(x), ensures that the encoded message polynomial will always be divisible 
by the generator polynomial without remainder.  This can be seen by multiplying equation (9) by 
g(x): 

)()()()( xrxqxgxxM kn +×=× −  

and rearranging: 

)()()()( xqxgxrxxM kn ×=+× −  

whereupon we note that the left-hand side is the transmitted code word, T(x), and that the right-hand 
side has g(x) as a factor.  Also, because the generator polynomial, equation (6), has been chosen to 
consist of a number of factors, each of these is also a factor of the encoded message polynomial and 
will divide it without remainder.  Thus, if this is not true for the received message, it is clear that 
one or more errors has occurred. 

3.2 Encoding example 
We can now choose a message consisting of eleven 4-bit symbols for our (15, 11) code, for 
example, the values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 which we wish to encode.  These values are 
represented by a message polynomial: 

x10 + 2x9 + 3x8 + 4x7 + 5x6 + 6x5 + 7x4 + 8x3 + 9x2 + 10x + 11 .... (10). 

The message polynomial is then multiplied by x4 to give: 

x14 + 2x13 + 3x12 + 4x11 + 5x10 + 6x9 + 7x8 + 8x7 + 9x6 + 10x5 + 11x4 

to allow space for the four parity symbols.  This polynomial is then divided by the code generator 
polynomial, equation (7), to produce the four parity symbols as a remainder.  This can be 
accomplished in columns as a long division process as shown before, except that in this case, the 
coefficients of the polynomials are field elements of GF(16) instead of binary values, so the process 
is more complicated. 
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3.2.1 Polynomial division 
At each step the generator polynomial is multiplied by a factor, shown at the left-hand column, to 
make the most significant term the same as that of the remainder from the previous step.  When 
subtracted (added), the most significant term disappears and a new remainder is formed.  The 11 
steps of the division process are as follows: 

 

 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0  
 1 2 3 4 5 6 7 8 9 10 11 0 0 0 0 
× x10 1 15 3 1 12 
  13 0 5 9 6 
× 13x9  13 7 4 13 3 
   7 1 4 5 7 
× 7x8   7 11 9 7 2 
    10 13 2 5 8 
× 10x7    10 12 13 10 1 
     1 15 15 9 9 
× 1x6     1 15 3 1 12 
      0 12 8 5 10 
× 0x5      0 0 0 0 0 
       12 8 5 10 11 
× 12x4       12 8 7 12 15 
        0 2 6 4 0 
× 0x3        0 0 0 0 0 
         2 6 4 0 0 
× 2x2         2 13 6 2 11 
          11 2 2 11 0 
× 11x          11 3 14 11 13 
           1 12 0 13 0 
× 1           1 15 3 1 12 
            3 3 12 12 
 

and the division produces the remainder: 

r(x) = 3x3 + 3x2 + 12x + 12. 

The quotient, q(x), produced as the left-hand column of multiplying values is not required and is 
discarded. 

The encoded message polynomial T(x) is then: 

x14 + 2x13 + 3x12 + 4x11 + 5x10 + 6x9 + 7x8 + 8x7 

 + 9x6 + 10x5 + 11x4 + 3x3 + 3x2 + 12x + 12 .... (11) 

or, written more simply: 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 3, 12, 12. 
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3.2.2 Pipelined version 
Hardware encoders usually operate on pipelined data, so the division calculation is made in a 
slightly altered form using the message bits one at a time as they are presented: 

 

 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0  
 0 0 0 0 
 1 
g(x) × 1→ 15 3 1 12 
  15 3 1 12 
  2 
g(x) ×  13→ 7 4 13 3 
   4 5 1 3 
   3 
g(x) ×   7→ 11 9 7 2 
    14 8 4 2 
    4 
g(x) ×    10→12  13 10 1 
     4 9 8 1 
     5 
g(x) ×     1→ 15 3 1 12 
      6 11 0 12 
      6 
g(x) ×      0→ 0 0 0 0 
       11 0 12 0 
       7 
g(x) ×       12→ 8 7 12 15 
        8 11 12 15 
        8 
g(x) ×        0→ 0 0 0 0 
         11 12 15 0 
         9 
g(x) ×         2→ 13 6 2 11 
          1 9 2 11 
          10 
g(x) ×          11→ 3 14 11 13 
           10 12 0 13 0 
           11 
g(x) ×           1→ 15 3 1 12 
            3 3 12 12 
 

With this arrangement, the first message value 1 is added to the contents of the most significant 
column, initially zero.  The resulting value, 1, is then multiplied by the remaining coefficients of the 
generator polynomial 15, 3, 1, 12 to give the values to be added to the contents of the remaining 
columns, which are also initially zero.  Then the second message value, 2, is added to the contents 
of the next most significant column, 15, to produce 13.  This value is multiplied by the generator 
polynomial coefficients to give the values 7, 4, 13, and 3, and so on. 
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3.3 Encoder hardware 

3.3.1 General arrangement 
The pipelined calculation shown in section 3.2.2 is performed using the conventional encoder 
circuit shown in Figure 2.  All the data paths shown provide for 4-bit values. 

D

input

D D D

1 1512 3

output

control

GF
adder

GF
multiplier

KEY

 

Figure 2 - A (15, 11) Reed-Solomon encoder 

During the message input period, the selector passes the input values directly to the output and the 
AND gate is enabled.  After the eleven calculation steps shown above have been completed (in 
eleven consecutive clock periods) the remainder is contained in the D-type registers.  The control 
waveform then changes so that the AND gate prevents further feedback to the multipliers and the 
four remainder symbol values are clocked out of the registers and routed to the output by the 
selector. 

3.3.2 Galois field adders 
The adders of Figure 2 perform bit-by-bit addition modulo-2 of 4-bit numbers and each consists of 
four 2-input exclusive-OR gates.  The multipliers, however, can be implemented in a number of 
different ways. 

3.3.3 Galois field constant multipliers 
Since each of these units is multiplying by a constant value, one approach would be to use a full 
multiplier and to fix one input.  Although a full multiplier is significantly more complicated, with an 
FPGA design, the logic synthesis process would strip out at least some of the unused circuitry.  
More will be said of full multipliers in Section 5.3.4.1.  The other two approaches that come to 
mind are either to work out the equivalent logic circuit or to specify it as a look-up table, using a 
read-only memory. 

3.3.3.1 Dedicated logic constant multipliers 
For the logic circuit approach, we can work out the required functionality by using a general 
polynomial representation of the input signal a3α3 + a2α2 + a1α + a0.  This is then multiplied by the 
polynomials represented by the values 15, 3, 1 and 12 from Table 1.  This involves producing a 
shifted version of the input for each non-zero coefficient of the multiplying polynomial.  Where the 
shifted versions produce values in the α6, α5 or α4 columns, the 4-bit equivalents (from Table 1) are 
substituted.  The bit values in each of the α3, α2, α1 and α0 columns are then added to give the 
required input bit contributions for each output bit. 
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For example, for multiplication by 15 (= α3 + α2 + α + 1): 

 α6 α5 α4 α3 α2 α1 α0 
×α3 a3 a2 a1 a0 0 0 0 
×α2  a3 a2 a1 a0 0 0 
×α   a3 a2 a1 a0 0 
×1    a3 a2 a1 a0 
 a3 a2+a3 a1+a2+a3 0  0 a1+a2+a3 a1+a2+a3 
    0  a2+a3 a2+a3 0 
    a3 a3 0 0 
    a0+a1+a2 a0+a1 a0 a0+a1+a2+a3 
 

The input bits contributing to a particular output bit are identified by the summation at the foot of 
each column.  Similar calculations can be performed for multiplication by 3 (= α + 1), 1 (=1) and 
12 (= α3 + α2) and give the results: 

  α3 α2 α1 α0 
     
 ×3 a2+a3 a1+a2 a0+a1+a3 a0+a3 
 
 ×1 a3 a2 a1 a0 
 
 ×12 a0+a1+a3 a0+a2 a1+a3 a1+a2 
 
As the additions are modulo 2, these are implemented with exclusive-OR gates as shown in Figure 
3. 
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Figure 3 - Multipliers for the circuit of Figure 2 

3.3.3.2 Look-up table constant multipliers 
Alternatively, each multiplier can be implemented as a look-up table with 2m = 16 entries.  The 
entry values can be obtained by cyclically shifting the non-zero elements from Table 1 according to 
the index of the multiplication factor.  This is because the multiplying index is added to the index of 
the input, modulo 15, thus shifting the results according to the multiplying value.  However, the 
binary values of the polynomial coefficients of the input need to be arranged in ascending order to 
match the binary addressing of the look-up table memory.  When this is done the values shown in 
Table 3 are produced. 

 

 

 



 

 15 

input ×15 = α12 ×3 = α4 ×1 = α0 ×12 = α6 
index 
form 

decimal 
form 

decimal 
form 

decimal 
form 

decimal 
form 

decimal 
form 

0  0  0  0  0  0 
α0  1  15  3  1  12 
α1  2  13  6  2  11 
α4  3  2  5  3  7 
α2  4  9  12  4  5 
α8  5  6  15  5  9 
α5  6  4  10  6  14 
α10  7  11  9  7  2 
α3  8  1  11  8  10 
α14  9  14  8  9  6 
α9  10  12  13  10  1 
α7  11  3  14  11  13 
α6  12  8  7  12  15 
α13  13  7  4  13  3 
α11  14  5  1  14  4 
α12  15  10  2  15  8 

Table 3 - Look-up tables for the fixed multipliers of Figure 2 

3.4 Code shortening 
For a shortened version of the (15, 11) code, for example a (12, 8) code, the first three terms of the 
message polynomial, equation (10), would be set to zero.  The effect of this on the pipelined 
calculation in section 3.2.2 is that all the columns would contain zero until the first non-zero input 
value associated with the x11 term.  The calculation would then proceed as if it had been started at 
that point.  Because of this, the circuit arrangement of Figure 2 can be used for the shortened code 
as long as the control waveform is high during the input data period, in this case eight clock periods 
instead of eleven. 

4 Theory of error correction 

4.1 Introducing errors  
Errors can be added to the coded message polynomial, T(x), in the form of an error polynomial, 
E(x).  Thus the received polynomial, R(x), is given by: 

R(x) = T(x) + E(x)  .... (12) 

where 

E(x) = En-1xn-1 + .... + E1x + E0 

and each of the coefficients En-1 .... E0 is an m-bit error value, represented by an element of GF(2m), 
with the positions of the errors in the code word being determined by the degree of x for that term.  
Clearly, if more than t = (n-k)/2 of the E values are non-zero, then the correction capacity of the 
code is exceeded and the errors are not correctable. 
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4.2 The syndromes 

4.2.1 Calculating the syndromes 
In section 3.1.3 it was shown that the transmitted code word is always divisible by the generator 
polynomial without remainder and that this property extends to the individual factors of the 
generator polynomial.  Therefore the first step in the decoding process is to divide the received 
polynomial by each of the factors (x + αi) of the generator polynomial, equation (6).  This produces 
a quotient and a remainder, that is: 

12)()( −+≤≤
+

+=
+

tbibfor
x

SxQ
x

xR
i

i
ii αα

 .... (13) 

where b is chosen to match the set of consecutive factors in (6).  The remainders Si resulting from 
these divisions are known as the syndromes and, for b=0, can be written as S0 .... S2t-1. 

Rearranging (13) produces: 

)()()( xRxxQS i
ii ++×= α  

so that when x = αi this reduces to: 

Si = R(αi) 

 = Rn-1(αi)n-1 + Rn-2(αi)n-2 + .... + R1αi + R0 .... (14) 

where the coefficients Rn-1 .... R0 are the symbols of the received code word.  This means that each 
of the syndrome values can also be obtained by substituting x = αi in the received polynomial, as an 
alternative to the division of R(x) by (x + αi) to form the remainder. 

4.2.2 Horner's method 
Equation (14) can be re-written as: 

Si  = ( .... (Rn-1αi + Rn-2)αi + .... + R1)αi + R0 

In this form, known as Horner's method, the process starts by multiplying the first coefficient Rn-1 
by αi.  Then each subsequent coefficient is added to the previous product and the resulting sum 
multiplied by αi until finally R0 is added.  This has the advantage that the multiplication is always 
by the same value αi at each stage. 

4.2.3 Properties of the syndromes 
Substituting in equation (12): 

R(αi) = T(αi) + E(αi) 

in which T(αi) = 0 because x+αi is a factor of g(x), which is a factor of T(x).  So: 

R(αi) = E(αi) = Si .... (15). 

This means that the syndrome values are only dependent on the error pattern and are not affected by 
the data values.  Also, when no errors have occurred, all the syndrome values are zero. 
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4.3 The syndrome equations 
While the relationship in equation (14) between the syndromes and the received code word allows 
the syndrome values to be calculated, that in equation (15) between the syndromes and the error 
polynomial can be used to produce a set of simultaneous equations from which the errors can be 
found.  To do this, the error polynomial E(x) is re-written to include only the terms that correspond 
to errors.  So assuming v errors have occurred, where v ≤ t: 

ve
v

ee xYxYxYxE +++= ....)( 21
21  

where e1, .... ev identify the locations of the errors in the code word as the corresponding powers of 
x, while Y1, .... Yv represent the error values at those locations.  Substituting this in (15) produces 
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where  

ve
v

e XX αα == ,....,1
1  are known as error locators. 

Then the 2t syndrome equations can be written as: 
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It is important to note here that the syndromes are written as S0 .... S2t-1 to correspond with the roots 
α0 .... α2t-1 and the powers of X are dependent on having chosen those roots in equation (6). 

4.4 The error locator polynomial 
The next step is to introduce the error locator polynomial.  This turns out to be one of the more 
confusing steps in Reed-Solomon decoding because the literature defines two different, but related, 
expressions as the error locator polynomial.  One form, often denoted σ(x), is constructed to have 
the error locators X1 .... Xv as its roots, that is, v factors of the form (x+Xj) for j= 1 to v.  When 
expanded, these factors produce a polynomial of degree v with coefficients σ1 .... σv: 
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The alternative form is usually denoted Λ(x).  This is constructed to have v factors of the form 
(1+Xjx) and therefore has the inverses X1

-1, .... , Xv
-1 of the v error locators as its roots.  When 

expanded, these factors produce a polynomial of degree v with coefficients Λ1 .... Λv: 

)1)....(1)(1()( 21 xXxXxXx v+++=Λ  
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v
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−

1
11 ....1  .... (17). 

However, it turns out that 
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so the coefficients σ1 .... σv are the same as Λ1 .... Λv. 

4.5 Finding the coefficients of the error locator polynomial 

4.5.1 The direct method 

For each error, there is a corresponding root Xj
-1 that makes Λ(x) equal to zero.  So  
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Similar equations can be produced for all the errors (different values of j) and the terms collected so 
that: 
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or 

0....11 =Λ++Λ+ −++ ivvivi SSS  

recognising that the summation terms are the syndrome values using (16).  Similar equations can be 
derived for other values of i so that: 

0....11 =Λ++Λ+ −++ ivvivi SSS   for i = 0, .... , 2t-v-1 .... (18) 

so producing a set of 2t-v simultaneous equations, sometimes referred to as the key equations, with 
Λ1 .... Λv as unknowns. 

To solve this set of equations for Λ1 .... Λv, we can use the first v equations, represented by the 
matrix equation (19), except that, at this point, v is unknown:  
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Because of this, it is necessary to calculate the determinant of the matrix for each value of v, starting 
at v=t and working down, until a non-zero determinant is found.  This indicates that the equations 
are independent and can be solved. The coefficients of the error locator polynomial Λ1 .... Λv can 
then be found by inverting the matrix to solve the equations. 

4.5.2 Berlekamp's algorithm 
Berlekamp's algorithm [5, 6] is a more efficient iterative technique of solving equations (18) that 
also overcomes the problem of not knowing v.  This is done by forming an approximation to the 
error locator polynomial, starting with Λ(x)=1.  Then at each stage, an error value is formed by 
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substituting the approximate coefficients into the equations corresponding to that value of v.  The 
error is then used to refine a correction polynomial, which is then added to improve the approximate 
Λ(x).  The process ends when the approximate error locator polynomial checks consistently with the 
remaining equations.  A statement of the algorithm and a worked example is included in the 
Appendix as Section 8.1. 

4.5.3 The Euclidean algorithm 
Another efficient technique for obtaining the coefficients of the error location polynomial is based 
on Euclid's method for finding the highest common factor of two numbers [7].  This uses the 
relationship between the errors and the syndromes expressed in the form of an equation based on 
polynomials.  This is also often referred to as the fundamental or key equation and requires two new 
polynomials, the syndrome and error magnitude polynomials, to be introduced. 

4.5.3.1 The syndrome polynomial 
For use in the key equation, the syndrome polynomial is defined as: 

S(x) = Sb+2t-1x2t-1 + .... + Sb+1x + Sb 

where the coefficients are the 2t syndrome values calculated from the received code word using 
equation (14), or its equivalent for other values of b. 

4.5.3.2 The error magnitude polynomial 
The error magnitude polynomial can be written as: 

Ω(x) = Ωv-1xv-1 + .... + Ω1x + Ω0 

This is sometimes referred to as the error value or error evaluator polynomial. 

4.5.3.3 The key equation 
The key equation can then be written as: 

Ω(x) = [S(x) Λ(x)] mod x2t 

where S(x) is the syndrome polynomial and Λ(x) is the error locator polynomial.  Any terms of 
degree x2t or higher in the product are ignored, so that 

Ω0 = Sb 

Ω1 = Sb+1 + SbΛ1 

M  

Ωv-1 = Sb+v-1 + Sb+v-2Λ1 + .... + SbΛv-1 

4.5.3.4 Applying Euclid's method to the key equation 
Euclid's method [7] can find the highest common factor d of two elements a and b, such that: 

ua + vb = d .... (20) 

where u and v are coefficients produced by the algorithm. 

The product of S(x), which has degree 2t-1, and Λ(x), which has degree v, will have degree 2t+v-1.  
So the product can be expressed as: 
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S(x) × Λ(x) = F(x) × x2t + Ω(x) 

in which the terms of x2t and above are represented by the F(x) term and the remaining part is 
represented by Ω(x).  This can be rearranged as: 

Λ(x) × S(x) + F(x) × x2t = Ω(x) 

so that the known terms S(x) and x2t correspond to the a and b terms of (20).  The algorithm then 
consists of dividing x2t by S(x) to produce a remainder.  S(x) then becomes the dividend and the 
remainder becomes the divisor to produce a new remainder.  This process is continued until the 
degree of the remainder becomes less than t.  At this point, both the remainder Ω(x) and the 
multiplying factor Λ(x) are available as terms in the calculation. 

4.6 Solving the error locator polynomial - the Chien search 

Having calculated the coefficient values, Λ1 .... Λv, of the error locator polynomial, it is now 
possible to find its roots.  If the polynomial is written in the form: 

Λ(x) = X1(x + X1
-1) X2(x + X2

-1) .... 

then clearly the function value will be zero if x = X1
-1, X2

-1, .... , that is: 

,...., 21 eex −−= αα . 

The roots, and hence the values of X1 .... Xv, are found by trial and error, known as the Chien search 
[8], in which all the possible values of the roots (the field values αi, 0 ≤ i ≤ n-1) are substituted into 
equation (17) and the results evaluated.  If the expression reduces to zero, then that value of x is a 
root and identifies the error position.  Since the first symbol of the code word corresponds to the xn-1 
term, the search begins with the value α-(n-1) (=α1), then α-(n-2) (=α2), and continues to α0, which 
corresponds to the last symbol of the code word. 

4.7 Calculating the error values 

4.7.1 Direct calculation 
When the error locations X1 .... Xv are substituted into the syndrome equations (16), the first v 
equations can be solved by matrix inversion to produce the error values Y1 .... Yv.  

4.7.2 The Forney algorithm 
This is an alternative means of calculating the error value Yj having established the error locator 
polynomial Λ(x) and the error value polynomial Ω(x).  If Berlekamp's algorithm has been used to 
find Λ(x), then Ω(x) can be found by using the relationships in Section 4.5.3.3.  The algorithm 
makes use of the derivative of the error locator polynomial. 

4.7.2.1 The derivative of the error locator polynomial 
For a polynomial f(x) given by: 

f(x) = 1 + f1x + f2x2 + .... + fvxv 

the derivative is given by: 

f '(x) = f1 + 2f2x + .... + vfvxv-1 

However, for the error locator polynomial Λ(x), for x = Xj
-1, the derivative reduces to: 



 

 21 

Λ'(Xj
-1) = Λ1 + Λ3Xj

-2 + Λ5Xj
-4 + .... 

which amounts to setting even-powered terms of the error locator polynomial to zero and dividing 
through by x = Xj

-1. 

4.7.2.2 Forney's equation for the error magnitude 
Methods of calculating the error values Y1 .... Yv based on Forney's algorithm are more efficient than 
the direct method of solving the syndrome equations as described in section 4.7.1.  According to 
Forney's algorithm, the error value is given by: 
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Λ
Ω
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jj X

X
XY  ....(21) 

where Λ'(Xj
-1) is the derivative of Λ(x) for x = Xj

-1.  When b=1, the Xj
1-b term disappears, so the 

formula is often quoted in the literature as simply Ω/Λ', which gives the wrong results for b=0 and 
other values.  (The value of b is defined in equation (6).) 

It should be noted that equation (21) only gives valid results for symbol positions containing an 
error.  If the calculation is made at other positions, the result is generally non-zero and invalid.  The 
Chien search is therefore still needed to identify the error positions. 

4.8 Error correction 
Having located the symbols containing errors, identified by Xj, and calculated the values Yj of those 
errors, the errors can be corrected by adding the error polynomial E(x) to the received polynomial 
R(x).  It should be remembered that conventionally the highest degree term of the received 
polynomial corresponds to the first symbol of the received code word. 

5 Reed-Solomon decoding techniques 
Whereas the previous section has dealt with the underlying theory and, in some cases, identified 
several alternative approaches to some processes, this section will describe a specific approach to 
decoding hardware based around the Euclidean algorithm. 

5.1 Main units of a Reed-Solomon decoder 
The arrangement of the main units of a Reed-Solomon decoder reflects, for the most part, the 
processes of the previous Section. 

input
R

calculate the
syndromes

output

Chien search
for error
positions

form the
error location
polynomial:

Euclid

calculate the
error values:

Forney method

data delay

S
Ω, Λ'

Λ

Ω/Λ' Y

X

 

Figure 4 - Main processes of a Reed-Solomon decoder 
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Thus, in Figure 4, the first process is to calculate the syndrome values from the incoming code 
word.  These are then used to find the coefficients of the error locator polynomial Λ1 .... Λv and the 
error value polynomial Ω0 .... Ωv-1 using the Euclidean algorithm.  The error locations are identified 
by the Chien search and the error values are calculated using Forney's method.  As these 
calculations involve all the symbols of the received code word, it is necessary to store the message 
until the results of the calculation are available.  Then, to correct the errors, each error value is 
added (modulo 2) to the symbol at the appropriate location in the received code word. 

5.1.1 Including errors in the worked example. 
The steps in the decoding process are illustrated by continuing the worked example of the (15, 11) 
Reed-Solomon code that was used with the encoding process in Section 3. 

Introducing two errors in the sixth (x9 term) and thirteenth (x2 term) symbols of the coded message 
produces an error polynomial with two non-zero terms: 

E(x) = E9x9 + E2x2 

and we can choose, for example, E9 = 13 and E2 = 2, so that three bits of the sixth symbol are 
altered while only one bit of the thirteenth symbol is affected.  Although there are four bits in error, 
in terms of the error correcting capacity of the code this constitutes only two errors because this is 
based on the number of symbols in error.  Therefore these errors should be correctable. 

Addition of the errors makes the received message: 

R(x)  = (x14 + 2x13 + 3x12 + 4x11 + 5x10 + 6x9 + 7x8 + 8x7 

 + 9x6 + 10x5 + 11x4 + 3x3 + 3x2 + 12x + 12) + (13x9 + 2x2) 

 =  x14 + 2x13 + 3x12 + 4x11 + 5x10 + 11x9 + 7x8 + 8x7 

 + 9x6 + 10x5 + 11x4 + 3x3 + x2 + 12x + 12 .... (22) 

or, more simply 

1, 2, 3, 4, 5, 11, 7, 8, 9, 10, 11, 3, 1, 12, 12. 

5.2 Syndrome calculation 

5.2.1 Worked examples for the (15, 11) code 

Section 4.2 showed that the syndrome corresponding to each root αi of the generator polynomial 
could be calculated either by dividing the received polynomial R(x) by x + αi, or by evaluating 
R(αi).  In the latter case, Horner's method proves an efficient technique. 

For the direct division process, we would use a method of calculation similar to that of Section 
3.2.1.  However, the pipelined approach of Section 3.2.2 is more suitable for hardware, so the 
calculation of S0, corresponding to root α0, consists of the following steps where, in this case, the 
multiplication by α0 (= 1) is trivial: 
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 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0  
 0 
R14 1 
α0 × 1→ 1 
R13  2 
α0 ×  3→ 3 
R12   3 
α0 ×   0→ 0 
R11    4 
α0 ×    4→ 4 
R10     5 
α0 ×     1→ 1 
R9      11 
α0 ×      10→ 10 
R8       7 
α0 ×       13→ 13 
R7        8 
α0 ×        5→ 5 
R6         9 
α0 ×         12→ 12 
R5          10 
α0 ×          6→ 6 
R4           11 
α0 ×           13→ 13 
R3            3 
α0 ×            14→ 14 
R2             1 
α0 ×             15→ 15 
R1              12 
α0 ×              3→ 3 
R0               12 
               15 
giving       

S0  =  15. 

Alternatively, we can use substitution of the root value in equation (22), so for S1, substituting α1 
for x and using the equivalences of Table 1, we obtain: 

S1 = (α1)14 + 2(α1)13 + 3(α1)12 + 4(α1)11 + 5(α1)10 + 11(α1)9 + 7(α1)8 + 8(α1)7 

 + 9(α1)6 + 10(α1)5 + 11(α1)4 + 3(α1)3 + (α1)2 + 12(α1) + 12  

 = 3 

Or if we use Horner's method: 

S2 = (((((((((((((1 × α2 + 2) × α2 + 3) × α2 + 4) × α2 + 5) × α2 + 11) × 

 α2 + 7) × α2 + 8) × α2 + 9) × α2 + 10) × α2 + 11) × α2 + 3) × 

 α2 + 1) × α2 + 12) × α2 + 12 

 = 4 
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Alternatively Horner's method can be written as a series of intermediate steps.  So, for S3 where α3 
= 8: 

( 0 + 1 ) × 8  = 8
( 8 + 2 ) × 8  = 15
( 15 + 3 ) × 8  = 10
( 10 + 4 ) × 8  =  9
( 9 + 5 ) × 8  = 10
( 10 + 11 ) × 8  =  8
( 8 + 7 ) × 8  =  1
( 1 + 8 ) × 8  =  4
( 4 + 9 ) × 8  =  2
( 2 + 10 ) × 8  =  12
( 12 + 11 ) × 8  =  13
( 13 + 3 ) × 8  =  9
( 9 + 1 ) × 8  =  12
( 12 + 12 ) × 8  =  0
 0 + 12    =  12

 

so that  

S3 = 12. 

5.2.2 Hardware for syndrome calculation 
The hardware arrangement used for syndrome calculation, shown in Figure 5, can be interpreted 
either as a pipelined polynomial division or as an implementation of Horner's method. 

input

D

αi

Si

control

 

Figure 5 - Forming a syndrome 

In the case of polynomial division, the process is basically the same as that described for encoding 
in section 3.2.2 (and shown in Figure 2), except much simpler because the degree of the divisor 
polynomial is one.  Thus there is only one feedback term with one multiplier, multiplying by αi, and 
only one register.  As before, the input values are added to the output of the register and all the data 
paths are m-bit signals.  The only difference in this case is that the AND-gate is used to prevent the 
contents of the register contributing at the start of the code word, which was achieved in Figure 2 by 
clearing the registers at the start of each block. 

Alternatively, this circuit can be seen as a direct implementation of Horner's method, in which the 
incoming symbol value is added to the contents of the register before being multiplied by αi and the 
result returned to the register. 

Clearly, all n symbols of the code word have to be accumulated before the syndrome value is 
produced.  Also, 2t circuits of the form of Figure 5 are required, one for each value of αi, each 
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corresponding to a root of the generator polynomial.  The Galois field adders and fixed multipliers 
can be implemented using the techniques described in Sections 3.3.2 and 3.3.3. 

5.2.3 Code shortening 
If the code is used in a shortened form, such as with a (12, 8) code as described in Section 3.4, then 
the first part of the message is not present.  Thus the pipelined calculation need only begin when the 
first element of the shortened message is present.  The same arrangement can therefore be used for 
the shortened code provided that the AND gate is controlled to prevent the register contents 
contributing to the first addition. 

5.3 Forming the error location polynomial using the Euclidean algorithm 

5.3.1 Worked example of the Euclidean algorithm 
To continue the worked example to find the coefficients of the error locator polynomial, it is first 
necessary to form the syndrome polynomial.  The syndrome values obtained in Section 5.2.1 are: 

S0 = 15, S1 = 3, S2 = 4 and S3 = 12 

so the syndrome polynomial is: 

S(x) = S3x3 + S2x2 + S1x + S0 

 = 12x3 + 4x2 + 3x + 15 

The first step of the algorithm (described in Section 4.5.3.4) is to divide x2t (in this case x4) by S(x).  
This involves multiplying S(x) × 10x (10 = 1/12) and subtracting (adding), followed by S(x) × 6 (6 = 
14/12) and subtracting.  This gives the remainder 6x2 + 6x + 4.  In the right hand process, the initial 
value 1 is multiplied by the same values used in the division process and added to an initial sum 
value of zero.  So the right-hand calculation produces 0 + 1 × (10x + 6) = 10x + 6. 

 

 x4 x3 x2 x1 x0   x2 x1 x0 
dividend: 1 0 0 0 0    0 0 
divisor × 10x: 1 14 13 12     10 0 
  14 13 12 0    10 0 
divisor × 6:  14 11 10 4    0 6 
remainder:   6 6 4    10 6 
 

Having completed the first division, the degree of the remainder is not less than t (= 2), so we do a 
new division using the previous divisor as the dividend and the remainder as the divisor, that is, 
dividing S(x) by the remainder 6x2 + 6x + 4.  First the remainder is multiplied by 2x (2 = 12/6) and 
subtracted, then multiplied by 13 (13 = 8/6) and subtracted to produce the remainder 3x + 14.  At 
the right hand side, the previous initial value (1) becomes the initial sum value and the previous 
result (10x + 6) is multiplied by the values used in the division process.  This produces 1 + (10x + 6) 
× (2x + 13) = 7x2 + 7x + 9. 

 x4 x3 x2 x1 x0   x2 x1 x0 
dividend:  12 4 3 15    0 1 
divisor × 2x:  12 12 8    7 12 0 
   8 11 15   7 12 1 
divisor × 13:   8 8 1     11 8 
remainder:    3 14   7 7 9 
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In general, the process would continue repeating the steps described above, but now the degree of 
the remainder (= 1) is less than t (= 2) so the process is complete.  The two results 7x2 + 7x + 9 and 
3x + 14 are in fact γ×Λ(x) and γ×Ω(x), respectively, where in this case the constant factor γ=9.  So 
dividing through by 9 gives the polynomials in the defined forms: 

Λ(x) = 14x2 + 14x + 1 

and 

Ω(x) = 6x + 15. 

Further examples of the Euclidean algorithm, which result in somewhat different sequences of 
operations, are shown in Appendix 8.2. 

5.3.2 Euclidean algorithm hardware 
The Euclidean algorithm can be performed using the arrangement of Figure 6 in which all data 
paths are 4 bits wide.  This arrangement broadly follows the calculation of Section 5.3.1 so that the 
lower part of the diagram performs the division (the left-hand side of the calculation) while the 
upper part performs the multiplication (the right-hand side).  Initially, the B register is loaded to 
contain the dividend and the A register to contain the syndrome values.  Also, the C register is set to 
1 and the D register, set to the initial sum, zero. 

At each step, the contents of B3 is divided by A3 (that is, multiplied by the inverse of A3) and the 
result used in the remaining multipliers.  The results of the multiplications are then added to the 
contents of the B and D registers to form the intermediate results.  At step one, the results are 
loaded back into the B and D registers and the contents of the A and C registers are retained.  At 
step two, the contents of the A and C registers are transferred to the B and D registers and the 
calculation results are loaded into the A and C registers.  Where necessary, the values are shifted 
between registers of different significance to take account of multiplications by x.  Table 4 shows 
the contents of the registers at intermediate steps in the calculation. 

step A3 A2 A1 A0 B3 B2 B1 B0 C1 C0  D2 D1 D0 
1 12 4 3 15 1 0 0 0 0 1  0 0 0 
2 12 4 3 15 14 13 12 0 0 1  0 10 0 
3 6 6 4 0 12 4 3 15 10 6  0 0 1 
4 6 6 4 0 8 11 15 0 10 6  7 12 1 

Table 4 - Register contents in the calculation of Section 5.3.1 

It should be noted that Figure 6 represents a simplification of the process and, as shown, will not 
produce the correct results for some error patterns.  This occurs when the contents of A3 is zero, 
potentially resulting in division by zero.  Some examples of this are shown in the Appendix, Section 
8.2.  Additional circuitry is required to sense these conditions and to alter the calculation sequence 
of Figure 6 accordingly. 

A further point is that the Λ and Ω outputs produced when the calculation is complete do not 
include the final division shown in 5.3.1.  Thus these values are multiplied by a constant (γ) relative 
to their defined values. 

The arrangement of Figure 6 shows the Euclidean algorithm in a highly parallel form and there is 
considerable scope for reducing the hardware requirements by re-using circuit elements, particularly 
the multipliers.  A commonly used arrangement is to recognise that the upper and lower circuits of 
Figure 6 are very similar.  Because of this, it is possible to use one circuit with duplicated registers 
and to interleave the steps of the calculation accordingly. 



 

 27 

 

 

 

 

D0

S0

inv

s
h
i
f
t

S1

S2

S3

0

0

0

1

0

0

0

0

1

0

γ

γΛ1

γΛ2

γΩ0

γΩ1

0

0

D1

D2

C0

C1

B0

B1

B2

B3

A0

A1

A2

A3

 

Figure 6 - The Euclidean processor 



 

 28 

5.3.2.1 Full multipliers 
The Galois field multipliers described up to this point have involved multiplication by a constant, 
whereas those of Figure 6 are full multipliers.  Full multipliers can be implemented by similar 
techniques to those described in Section 3.3.3, either as dedicated logic multipliers or as look-up 
tables, although with 22m locations, the latter technique rapidly becomes inefficient as the value of 
m increases.  It is also possible to use look-up tables with 2m locations to convert to logarithms, 
which can then be added modulo 2m - 1 and the result converted back with an inverse look-up table.  
The need to sense zero inputs and produce a modulo 2m - 1 result generally makes this technique 
more complicated than the shift-and-add approach. 
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Figure 7 - A full multiplier for GF(16) 

Figure 7 shows the arrangement of a 4-bit by 4-bit shift-and-add multiplier, drawn to emphasise the 
three underlying processes.  First the array of AND gates generates the set of shifted product terms, 
producing seven levels of significance.  Next the first column of exclusive-OR gates sums (modulo 
2) the products at each level.  Finally, the three upper levels beyond the range of field values are 
converted to fall within the field, using the relationships of Table 1, and the contributions added by 
the three pairs of exclusive-OR gates. 

5.3.2.2 Division or inversion 
Having designed a multiplier, then it is probably most straightforward to implement Galois field 
division using a look-up table with 2m locations to generate the inverse and then to multiply.  The 
inverses are easily calculated as shown in Table 5 using field elements in index form.  This shows 
the element values in ascending order to correspond with the addressing of the look-up table. 
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input 
(decimal) 

input 
(index) 

inverse 
(index) 

inverse 
(decimal) 

 0 0 0  0 
 1 α0 α0  1 
 2 α1 α-1 = α14  9 
 3 α4 α-4 = α11  14 
 4 α2 α-2 = α13  13 
 5 α8 α-8 = α7  11 
 6 α5 α-5 = α10  7 
 7 α10 α-10 = α5  6 
 8 α3 α-3 = α12  15 
 9 α14 α-14 = α1  2 
 10 α9 α-9 = α6  12 
 11 α7 α-7 = α8  5 
 12 α6 α-6 = α9  10 
 13 α13 α-13 = α2  4 
 14 α11 α-11 = α4  3 
 15 α12 α-12 = α3  8 

Table 5 - Look-up table for inverse values in GF(16) 

The table includes 0 as the Galois field inverse of 0. 

5.4 Solving the error locator polynomial - the Chien search 

5.4.1 Worked example 

To try the first position in the code word, corresponding to ej=14, we need to substitute α-14 into the 
error locator polynomial: 

Λ(x) = 14x2 + 14x + 1 

Λ(α-14) = 14(α-14)2 + 14(α-14) + 1 

 = 14(α1)2 + 14(α1) + 1 

 = α11 α2 + α11 α1 + α0 

 = α13 + α12 + α0 

 = 13 + 15 + 1 

 = 3 

and the non-zero result shows that the first position does not contain an error. 

For subsequent positions, the power of α to be substituted will advance by one for the x term and by 
two for the x2 term, so we can tabulate the calculations as shown in Table 6. 
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x x2 term x term unity sum 
α-14 α13 α12 1  3 
α-13 α0 α13 1  13 
α-12 α2 α14 1  12 
α-11 α4 α0 1  3 
α-10 α6 α1 1  15 
α-9 α8 α2 1  0 
α-8 α10 α3 1  14 
α-7 α12 α4 1  13 
α-6 α14 α5 1  14 
α-5 α1 α6 1  15 
α-4 α3 α7 1  2 
α-3 α5 α8 1  2 
α-2 α7 α9 1  0 
α-1 α9 α10 1  12 
α0 α11 α11 1  1 

Table 6 - Terms in the Chien search example 

Having derived the values for the first row (multiplying Λ2 by α2 and Λ1 by α), each new row can 
be obtained from the previous row in the same way.  Adding the terms together then produces the 
sum for each row.  The two sum values of zero in Table 6 identify the error positions correctly as 
the 6th and 13th symbols, corresponding to the x9 and x2 terms, respectively, of the code word 
polynomial. 

Checking these results by multiplying out the factors, we obtain: 

(α9x + 1)(α2x + 1) = α11x2 + (α9 + α2)x + 1 

 = 14x2 + 14x + 1  = Λ(x)        as before. 

5.4.2 Hardware for polynomial solution 
The calculations of Table 6 form the basis of the method used to find the roots of the error locator 
polynomial shown in Figure 8.  The value of each term in the polynomial is calculated by loading 
the coefficient value γΛ and multiplying it by the appropriate power of α.  Then at each successive 
clock period, the next value of the term is produced by multiplying the previous result by the power 
of α.  Adding the values of the individual terms together produces the value of the polynomial for 
each symbol position in turn.  Detecting zero values of the sum identifies symbol positions 
containing errors and is not affected by the presence of the multiplying factor γ.  

It may be noted that in the case of b=0 the top term simplifies to holding the γ value in the register. 

5.4.3 Code shortening 
For shortened codes, because the polynomial value is calculated from the start of the full-length 
code word, a correction to the initial value of each term is needed to take account of the 
multiplications by α1, α2, .... which would have occurred at the missing symbol positions. 
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Figure 8 - The Chien search 

5.5 Calculating the error values 

5.5.1 Forney algorithm Example 

The Forney method consists of calculating the quotient of two polynomials, Ω(x) and Λ'(x), the 
derivative of Λ(x), for x = Xj

-1.  The derivative is obtained by setting even powers of x to zero in: 

Λ(x) = 14x2 + 14x + 1 

and dividing by x, so that: 

Λ'(Xj
-1) = 14 Xj

-1/ Xj
-1 = 14. 

So from equation (21) we can derive that: 
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156 1 +

=
−

j
jj

X
XY  

Knowing the positions of the errors from Section 5.4.2 as the 6th (x9 term) and 13th (x2 term) the 
error values can be calculated for Xj = α9 as: 

13
14

156 9
9 =+=

−ααjY  

and for Xj = α2  
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156 2
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−ααjY  

which match the values introduced in section 5.1.1. 
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5.5.2 Error value hardware 

Hardware calculation of the two polynomials, Ω(x) and Λ'(x),  can be performed in a similar manner 
to that for the Chien search shown in Figure 8, in particular, the function value is calculated for each 
symbol position in the code word in successive clock periods. 
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Figure 9 - Calculating error values 

Thus in Figure 9, there are two circuits producing the values of the Ω1 and Ω0 terms, which are 
added together.  However, the arrangement includes some simplifications, so that the derivative 
term is obtained directly from the Chien search circuit in Figure 8.  It turns out that when code 
generator polynomial roots beginning with α0 are chosen (b=0), the sum of the odd terms of Λ(x) 
can be used directly.  This provides Λ'(α-j)/αj directly, which eliminates the need to multiply Ω(α-j) 
by αj.  Thus the error value can be obtained by division of the two terms, shown in Figure 9 as 
inversion and multiplication. 

A further point is that the hardware arrangement operates without dividing through by the constant γ 
as shown at the end of Section 5.3.1.  This step is not needed because the multiplying factor cancels 
in the division so that the error value results are not affected. 

5.6 Error correction 
Errors are corrected by adding the error values Y, to the received symbols R at the positions located 
by the X values. 

5.6.1 Correction example 
The error values and positions can be formed into an error vector and added to the received code 
word to produce the corrected message: 

 

 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 
 0 0 0 0 0 13 0 0 0 0 0 0 2 0 0 
 1 2 3 4 5 11 7 8 9 10 11 3 1 12 12 
 1 2 3 4 5 6 7 8 9 10 11 3 3 12 12 
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5.6.2 Correction hardware 
The AND gate of Figure 9 is enabled at the error positions identified by the Chien search circuit of 
Figure 8 so that the valid error values are added modulo-2 to the appropriately delayed symbol 
values of the code word, as shown in Figure 4. 

5.7 Implementation complexity 
Having come this far, the reader will appreciate that the error correction capacity, t, has a strong 
influence on the complexity of the equations.  Also, the number of bits in a symbol, m, affects the 
complexity of the Galois field arithmetic.  Because of the full multiplications involved, the 
calculations to find the coefficients of the error location polynomial Λ(x) and the error magnitude 
polynomial Ω(x) form the most complicated part of the decoding process. 

It is difficult to provide meaningful gate-count figures for hardware implementations of the coder 
and decoder because these will depend strongly on the degree of parallelism that is used in the 
circuitry.  It is also possible to exchange complexity for delay in the decoding process.  If the logic 
family is able to support clock rates at a large multiple of the symbol rate (such as 8 times), then the 
complexity of many parts of the circuit are capable of being reduced by that factor.  Also, some 
designers may feel that a processor-based implementation is appropriate. 

For the DVB-T system, the Reed-Solomon coder represents only a small part (say 2-3%) of the 
whole modulator.  The decoder is much more significant, amounting to perhaps about 7% of the 
demodulator.  Considering that the demodulator may be approaching three times the complexity of 
the modulator, the Reed-Solomon decoder is probably up to ten times the complexity of the coder.  
To give a different perspective, the Reed-Solomon decoder may be about one quarter of the 
complexity of the Fast Fourier Transform required for DVB-T. 

So far, no mention has been made of erasure processing, in which the locations of the errors are 
known (through some separate indication from the receiver) but the error values are not.  This 
doubles the error correction capacity of the code and consequently doubles the number of equations 
to be solved.  It therefore represents a substantial increase in complexity over the basic correction 
process. 

6 Conclusion 
This note has described the theory and methods of Reed-Solomon coding and decoding with a view 
to facilitating implementation in dedicated hardware.  This has particular relevance in 
implementations of the DVB-T standard. 

Reed-Solomon coding circuits for DVB-T have already been implemented in hardware as part of 
the Digital Radio Camera project.  For the decoder, the techniques described have been tested in 
software for the DVB-T standard and in hardware for simpler codes.  It is believed that this has 
identified many of the pitfalls involved in these processes. 
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8 Appendix 

8.1 Berlekamp's algorithm 

8.1.1 The algorithm 
Berlekamp's algorithm [6] consists of a series of steps based on improving an approximation to the 
error locator polynomial Λ(x) using a correction polynomial C(x) and the syndrome values S0 ....  
S2t-1 as inputs.  It also requires a step parameter K and a parameter L which tracks the order of the 
equations. 

Initially we set: 

 K = 1, L = 0, Λ(x) = 1 and C(x) = x. 

Then each step consists of first calculating an error value e using: 
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So initially e = S0. 

Then, provided that e is non-zero, we produce Λ*(x), a new approximation to the error locator 
polynomial, given by: 

Λ*(x) = Λ(x) + e × C(x). 

If 2L < K, we set L = K - L and form a new correction polynomial from: 

C(x) = Λ(x) ÷ e. 

If e is zero, these calculations are omitted. 

Then we produce a new C(x) by multiplying the old correction polynomial by x, replace Λ(x) by 
Λ*(x) and increment K.  The next step starts with the new values of K, L, Λ(x) and C(x) until K > 2t 
in which case Λ(x) is the required error locator polynomial. 
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8.1.2 Worked example 
The syndrome values calculated in Section 5.2.1 are: 

S0 = 15, S1 = 3, S2 = 4 and S3 = 12 

Step 1: 

 K L  C2 C1 C0  Λ2 Λ1 Λ0 
 1 0  0 1 0  0 0 1 

e = S0 = 15 

   15 × 0 1 0 → 0 15 0 
        0 15 1 
2L < K, so we set L = K - L = 1 and divide C(x) by e: 

1/e = 1/15 = 8 

    C2 C1 C0 
  8 × Λ(x) → 0 0 8 

Multiply  C(x) × x → 0 8 0 

Increment K → 2 ≤ 2t = 4, so continue. 

 
Step 2: 

 K L  C2 C1 C0  Λ2 Λ1 Λ0 
 2 1  0 8 0  0 15 1 

e = S1 + Λ1×S0 = 3+15×15 = 9 

   9 × 0 8 0 → 0 4 0 
        0 11 1 
2L = K, so we skip some steps, then: 
    C2 C1 C0 
  x × C(x) → 8 0 0 

Increment K → 3 ≤ 2t = 4, so continue. 

 
Step 3: 

 K L  C2 C1 C0  Λ2 Λ1 Λ0 
 3 1  8 0 0  0 11 1 

e = S2 + Λ1×S1 = 4+11×3 = 10 

   10 × 8 0 0 → 15 0 0 
        15 11 1 
2L < K, so we set L = K - L = 2 and divide C(x) by e: 

1/e = 1/10 = 12 

    C2 C1 C0 
  12 × Λ(x) → 0 13 12 

  x × C(x) → 13 12 0 

Increment K → 4 ≤ 2t = 4, so continue. 
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Step 4: 

 K L  C2 C1 C0  Λ2 Λ1 Λ0 
 4 2  13 12 0  15 11 1 

e = S3 + Λ1×S2 + Λ2×S1 = 12+11×4+15×3 = 4 

   4 × 13 12 0 → 1 5 0 
        14 14 1 
2L = K, so we skip some steps, then: 
    C2 C1 C0 
  x × C(x) → 12 0 0 

Increment K → 5 > 2t = 4, so the process is complete and Λ(x) = 14x2 + 14x + 1 as before. 

8.2 Special cases in the Euclidean algorithm arithmetic 
There are particular combinations of error values which cause the Euclidean algorithm calculations 
to depart from the steps shown in Section 5.3.1 and so require the processor of Figure 6 to follow a 
different sequence.  This is necessary when leading zero values occur in the divisor. 

8.2.1 Single errors 
Instead of the two errors introduced in Section 5.1.1, we will introduce only one, so that: 

E(x) = E9x9 

and we make E9 = 13 as before.  Then the syndrome values obtained are: 

S0 = 13, S1 = 11, S2 = 2 and S3 = 7 

so the syndrome polynomial is: 

S(x) = S3x3 + S2x2 + S1x + S0 

 = 7x3 + 2x2 + 11x + 13 

As before, the first step of the algorithm is to divide x2t by S(x), but this time we multiply S(x) × 6x 
(6 = 1/7) and subtract, followed by multiplying S(x) × 14 (14 = 12/7) and subtracting.  This gives 
the remainder 10.  In the right hand process, the initial value 1 is multiplied by the same values used 
in the division process and added to an initial sum value of zero.  So the right-hand calculation 
produces 0 + 1 × (6x + 14) = 6x + 14. 

 x4 x3 x2 x1 x0   x2 x1 x0 
dividend: 1 0 0 0 0    0 0 
divisor × 6x: 1 12 15 8     6 0 
  12 15 8 0    6 0 
divisor × 14:  12 15 8 10    0 14 
remainder:   0 0 10    6 14 
 

In this case, the degree of the remainder (=0) is already less than t (= 2) so that the required values 
are: 

γΛ(x) = 6x + 14 

and 

γΩ(x) = 10. 



 

 37 

When these values are used in the subsequent processes, the location and value of the error are 
identified correctly.  So for Xj = α9 we find: 

γΛ(α-9) = 6(α-9) + 14 

 = 6(α6) + 14 

 = 0 

and the error value is calculated as: 

13
6
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8.2.2 Errors that make S3 zero 
If we change one of the original error values, so that: 

E(x) = E9x9 + E2x2 

but we make E9 = 7, instead of 13, while E2 = 2, as before.  Then the syndrome values obtained are: 

S0 = 5, S1 = 11, S2 = 11 and S3 = 0 

and the syndrome polynomial is: 

S(x) = S3x3 + S2x2 + S1x + S0 

 = 11x2 + 11x + 5 

This time we have to multiply S(x) × 5x2 (5 = 1/11) and subtract, followed by S(x) × 5x (5 = 1/11) 
and subtracting, and then multiply S(x) × 15 (15 = 3/11) and subtract.  This gives the remainder 
x + 6.  In the right hand process, the initial value 1 is multiplied by the same values used in the 
division process and added to an initial sum value of zero.  So the right-hand calculation produces 
0 + 1 × (5x2 + 5x + 15) = 5x2 + 5x + 15. 

 x4 x3 x2 x1 x0   x2 x1 x0 
dividend: 1 0 0 0 0   0 0 0 
divisor × 5x2: 1 1 2     5 0 0 
  1 2 0    5 0 0 
divisor × 5x:  1 1 2    0 5 0 
   3 2 0   5 5 0 
divisor × 15:   3 3 6   0 0 15 
remainder:    1 6   5 5 15 

 

In this case, after a three step division, the degree of the remainder (=1) is already less than t (= 2) 
so that the required values are: 

γΛ(x) = 5x2 + 5x + 15 

and 
γΩ(x) = x + 6. 

Again these values lead to the correct locations and values of the errors.  So for Xj = α9 we find: 

γΛ(α-9) = 5(α-9)2 + 5(α-9) + 15 
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 = 5(α6)2  + 5(α6) + 15 

 = 0 

and the error value is calculated as: 

7
5
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Also for Xj = α2 we find: 

γΛ(α-2) = 5(α-2)2 + 5(α-2) + 15 

 = 5(α13)2  + 5(α13) + 15 

 = 0 

and the error value is calculated as: 

2
5

6  -2
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8.3 Arithmetic look-up tables for the examples 
Tables 7 and 8 below show the results for addition of two field elements (Table 7) and 
multiplication of two field elements (Table 8) in the sixteen element Galois field with the field 
generator polynomial 1)( 4 ++= xxxp . 

 

  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
 0  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
 1  1  0  3  2  5  4  7  6  9  8 11 10 13 12 15 14 
 2  2  3  0  1  6  7  4  5 10 11  8  9 14 15 12 13 
 3  3  2  1  0  7  6  5  4 11 10  9  8 15 14 13 12 
 4  4  5  6  7  0  1  2  3 12 13 14 15  8  9 10 11 
 5  5  4  7  6  1  0  3  2 13 12 15 14  9  8 11 10 
 6  6  7  4  5  2  3  0  1 14 15 12 13 10 11  8  9 
 7  7  6  5  4  3  2  1  0 15 14 13 12 11 10  9  8 
 8  8  9 10 11 12 13 14 15  0  1  2  3  4  5  6  7 
 9  9  8 11 10 13 12 15 14  1  0  3  2  5  4  7  6 
10 10 11  8  9 14 15 12 13  2  3  0  1  6  7  4  5 
11 11 10  9  8 15 14 13 12  3  2  1  0  7  6  5  4 
12 12 13 14 15  8  9 10 11  4  5  6  7  0  1  2  3 
13 13 12 15 14  9  8 11 10  5  4  7  6  1  0  3  2 
14 14 15 12 13 10 11  8  9  6  7  4  5  2  3  0  1 
15 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0 

Table 7 - Addition table for use in the worked examples 

 

     0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  1  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
  2  0  2  4  6  8 10 12 14  3  1  7  5 11  9 15 13 
  3  0  3  6  5 12 15 10  9 11  8 13 14  7  4  1  2 
  4  0  4  8 12  3  7 11 15  6  2 14 10  5  1 13  9 
  5  0  5 10 15  7  2 13  8 14 11  4  1  9 12  3  6 
  6  0  6 12 10 11 13  7  1  5  3  9 15 14  8  2  4 
  7  0  7 14  9 15  8  1  6 13 10  3  4  2  5 12 11 
  8  0  8  3 11  6 14  5 13 12  4 15  7 10  2  9  1 
  9  0  9  1  8  2 11  3 10  4 13  5 12  6 15  7 14 
 10  0 10  7 13 14  4  9  3 15  5  8  2  1 11  6 12 
 11  0 11  5 14 10  1 15  4  7 12  2  9 13  6  8  3 
 12  0 12 11  7  5  9 14  2 10  6  1 13 15  3  4  8 
 13  0 13  9  4  1 12  8  5  2 15 11  6  3 14 10  7 
 14  0 14 15  1 13  3  2 12  9  7  6  8  4 10 11  5 
 15  0 15 13  2  9  6  4 11  1 14 12  3  8  7  5 10 

Table 8 - Multiplication table for use in the worked examples 

 

 




