

R&D White Paper

WHP 031

July 2002

Reed-Solomon error correction

C.K.P. Clarke

Research & Development
 BRITISH BROADCASTING CORPORATION

 © BBC 2002. All rights reserved.

 BBC Research & Development
 White Paper WHP 031

 Reed-Solomon Error Correction

 C. K. P. Clarke

Abstract

Reed-Solomon error correction has several applications in broadcasting, in
particular forming part of the specification for the ETSI digital terrestrial
television standard, known as DVB-T.

Hardware implementations of coders and decoders for Reed-Solomon error
correction are complicated and require some knowledge of the theory of Galois
fields on which they are based. This note describes the underlying mathematics
and the algorithms used for coding and decoding, with particular emphasis on
their realisation in logic circuits. Worked examples are provided to illustrate the
processes involved.

Key words: digital television, error-correcting codes, DVB-T, hardware
implementation, Galois field arithmetic

 © BBC 2002. All rights reserved.

BBC Research & Development
White Paper WHP 031

 Reed-Solomon Error Correction

 C. K. P. Clarke

Contents

1 Introduction ..1
2 Background Theory..2
2.1 Classification of Reed-Solomon codes ...2
2.2 Galois fields ..3
2.2.1 Galois field elements ...3
2.2.2 Galois field addition and subtraction...3
2.2.3 The field generator polynomial ...4
2.2.4 Constructing the Galois field...4
2.2.5 Galois field multiplication and division ..5

2.3 Constructing a Reed-Solomon code..7
2.3.1 The code generator polynomial ...7
2.3.2 Worked example based on a (15, 11) code..7
2.3.3 The code specified for DVB-T..8

3 Reed-Solomon Encoding..9
3.1 The encoding process..9
3.1.1 The message polynomial ...9
3.1.2 Forming the code word..10
3.1.3 Basis for error correction...10

3.2 Encoding example...10
3.2.1 Polynomial division...11
3.2.2 Pipelined version ...12

3.3 Encoder hardware ...13
3.3.1 General arrangement ...13
3.3.2 Galois field adders...13
3.3.3 Galois field constant multipliers..13

3.3.3.1 Dedicated logic constant multipliers...13
3.3.3.2 Look-up table constant multipliers ...14

3.4 Code shortening ..15
4 Theory of error correction ..15
4.1 Introducing errors..15
4.2 The syndromes ..16

4.2.1 Calculating the syndromes ..16
4.2.2 Horner's method ..16
4.2.3 Properties of the syndromes ..16

4.3 The syndrome equations ...17
4.4 The error locator polynomial ..17
4.5 Finding the coefficients of the error locator polynomial ..18
4.5.1 The direct method..18
4.5.2 Berlekamp's algorithm...18
4.5.3 The Euclidean algorithm ...19

4.5.3.1 The syndrome polynomial ..19
4.5.3.2 The error magnitude polynomial...19
4.5.3.3 The key equation...19
4.5.3.4 Applying Euclid's method to the key equation ...19

4.6 Solving the error locator polynomial - the Chien search ..20
4.7 Calculating the error values ..20
4.7.1 Direct calculation...20
4.7.2 The Forney algorithm..20

4.7.2.1 The derivative of the error locator polynomial ...20
4.7.2.2 Forney's equation for the error magnitude ..21

4.8 Error correction ...21
5 Reed-Solomon decoding techniques ..21
5.1 Main units of a Reed-Solomon decoder..21
5.1.1 Including errors in the worked example..22

5.2 Syndrome calculation..22
5.2.1 Worked examples for the (15, 11) code ..22
5.2.2 Hardware for syndrome calculation ..24
5.2.3 Code shortening...25

5.3 Forming the error location polynomial using the Euclidean algorithm................................25
5.3.1 Worked example of the Euclidean algorithm..25
5.3.2 Euclidean algorithm hardware...26

5.3.2.1 Full multipliers..28
5.3.2.2 Division or inversion...28

5.4 Solving the error locator polynomial - the Chien search ..29
5.4.1 Worked example..29
5.4.2 Hardware for polynomial solution...30
5.4.3 Code shortening...30

5.5 Calculating the error values ..31
5.5.1 Forney algorithm Example ..31
5.5.2 Error value hardware ...32

5.6 Error correction ...32
5.6.1 Correction example ...32
5.6.2 Correction hardware ..33

5.7 Implementation complexity ..33
6 Conclusion..33

7 References ..33
8 Appendix ..34
8.1 Berlekamp's algorithm ..34
8.1.1 The algorithm ..34
8.1.2 Worked example..35

8.2 Special cases in the Euclidean algorithm arithmetic...36
8.2.1 Single errors ..36
8.2.2 Errors that make S3 zero ..37

8.3 Arithmetic look-up tables for the examples..39

© BBC 2002. All rights reserved. Except as provided below, no part of this document may be
reproduced in any material form (including photocopying or storing it in any medium by electronic
means) without the prior written permission of BBC Research & Development except in accordance
with the provisions of the (UK) Copyright, Designs and Patents Act 1988.

The BBC grants permission to individuals and organisations to make copies of the entire document
(including this copyright notice) for their own internal use. No copies of this document may be
published, distributed or made available to third parties whether by paper, electronic or other means
without the BBC's prior written permission. Where necessary, third parties should be directed to the
relevant page on BBC's website at http://www.bbc.co.uk/rd/pubs/whp for a copy of this document.

White Papers are distributed freely on request.

Authorisation of the Chief Scientist is required for
publication.

 1

 BBC Research & Development

 White Paper WHP 031

 Reed-Solomon Error Correction

 C. K. P. Clarke

1 Introduction
Many digital signalling applications in broadcasting use Forward Error Correction, a technique in
which redundant information is added to the signal to allow the receiver to detect and correct errors
that may have occurred in transmission. Many different types of code have been devised for this
purpose, but Reed-Solomon codes [1] have proved to be a good compromise between efficiency
(the proportion of redundant information required) and complexity (the difficulty of coding and
decoding). A particularly important use of a Reed-Solomon code for television applications is in
the DVB-T transmission standard [2].

Hitherto, modulators and demodulators for DVB-T have, in general, used custom chips to provide
the Reed-Solomon encoding and decoding functions. However, there are circumstances (such as
for digital radio cameras) where it would be beneficial to include these processes in gate array
designs for the transmitter and receiver. This would then provide the flexibility to modify the
encoding parameters to suit the particular requirements of the radio camera application without
sacrificing the compactness of single-chip implementation. Although custom core designs for gate
arrays are available, the charges are significant and can complicate further exploitation of the
intellectual property embodied in a design.

Although Reed-Solomon codes are described in many books on coding theory and have been the
subject of many journal papers, the description of the hardware techniques involved is generally
superficial, if described at all. The principal aim of this paper is to provide the basic information
needed for the design of hardware implementations of Reed-Solomon coders and decoders,
particularly those for the DVB-T system.

The mathematical basis for Reed-Solomon codes is complicated, but it is necessary to have a
reasonable understanding of at least what needs to be done, if not why it is done. Therefore this
paper first provides some essential background to the theory of Reed-Solomon codes and the Galois
field arithmetic on which the codes are based. Then the process of encoding is described, first
mathematically and then in terms of logic circuits. This is followed by an explanation of the basis
of error correction and then by some of the decoding algorithms commonly applied in error
correction hardware. Although some proofs are included, some results are just stated as a means of
controlling the length of the document. At each stage, the techniques used are illustrated with
worked examples.

 2

2 Background Theory

2.1 Classification of Reed-Solomon codes
There are many categories of error correcting codes, the main ones being block codes and
convolutional codes. A Reed-Solomon code is a block code, meaning that the message to be
transmitted is divided up into separate blocks of data. Each block then has parity protection
information added to it to form a self-contained code word. It is also, as generally used, a
systematic code, which means that the encoding process does not alter the message symbols and the
protection symbols are added as a separate part of the block. This is shown diagrammatically in
Figure 1.

code word (n symbols)

original message (k symbols)
parity

(n-k=2t symbols)

symbol
(m bits)

Figure 1 - Reed-Solomon code definitions

Also, a Reed-Solomon code is a linear code (adding two code words produces another code word)
and it is cyclic (cyclically shifting the symbols of a code word produces another code word). It
belongs to the family of Bose-Chaudhuri-Hocquenghem (BCH) codes [3, 4], but is distinguished by
having multi-bit symbols. This makes the code particularly good at dealing with bursts of errors
because, although a symbol may have all its bits in error, this counts as only one symbol error in
terms of the correction capacity of the code.

Choosing different parameters for a code provides different levels of protection and affects the
complexity of implementation. Thus a Reed-Solomon code can be described as an (n, k) code,
where n is the block length in symbols and k is the number of information symbols in the message.
Also

n ≤ 2m - 1 (1)

where m is the number of bits in a symbol. When (1) is not an equality, this is referred to as a
shortened form of the code. There are n-k parity symbols and t symbol errors can be corrected in a
block, where

t = (n-k)/2 for n-k even

or

t = (n-k-1)/2 for n-k odd.

Unfortunately, the notation used in the literature on error correcting codes, although generally
similar, is not universally consistent. Although the notation used here is representative of that used
elsewhere, the reader should be aware that confusing differences in terminology can arise. It is
therefore particularly important to be clear about how the parameters of a code are specified.

 3

2.2 Galois fields
To proceed further requires some understanding of the theory of finite fields, otherwise known as
Galois fields after the French mathematician.

2.2.1 Galois field elements
A Galois field consists of a set of elements (numbers). The elements are based on a primitive
element, usually denoted α, and take the values:

0, α0, α1, α2, , αN-1 (2)

to form a set of 2m elements, where N=2m - 1. The field is then known as GF(2m).

The value of α is usually chosen to be 2, although other values can be used. Having chosen α,
higher powers can then be obtained by multiplying by α at each step. However, it should be noted
that the rules of multiplication in a Galois field are not those that we might normally expect. This is
explained in Section 2.2.5.

In addition to the powers of α form, shown in (2), each field element can also be represented by a
polynomial expression of the form:

01
1

1 axaxa m
m +++−

−

where the coefficients am-1 to a0 take the values 0 or 1. Thus we can describe a field element using
the binary number am-1 a1a0 and the 2m field elements correspond to the 2m combinations of the
m-bit number.

For example, in the Galois field with 16 elements (known as GF(16), so that m=4), the polynomial
representation is:

0
0

1
1

2
2

3
3 xaxaxaxa +++

with a3a2a1a0 corresponding to the binary numbers 0000 to 1111. Alternatively, we can refer to the
field elements by the decimal equivalents 0 to 15 as a short-hand version of the binary numbers.

Arithmetic in a finite field has processes of addition, subtraction, multiplication and division, but
these differ from those we are used to with normal integers. The effect of these differences is that
any arithmetic combination of field elements always produces another field element.

2.2.2 Galois field addition and subtraction
When we add two field elements, we add the two polynomials:

0
0

1
1

1
1

0
0

1
1

1
1

0
0

1
1

1
1)....()....(xcxcxcxbxbxbxaxaxa m

m
m

m
m

m +++=+++++++ −
−

−
−

−
−

where

ci = ai + bi for 0 ≤ i ≤ m-1.

However, the coefficients can only take the values 0 and 1, so

ci = 0 for ai = bi

and

ci = 1 for ai ≠ bi (3)

Thus two Galois field elements are added by modulo-two addition of the coefficients, or in binary
form, producing the bit-by-bit exclusive-OR function of the two binary numbers.

 4

For example, in GF(16) we can add field elements x3 + x and x3 + x2 + 1 to produce x2 + x + 1. As
binary numbers, this is:

1010 + 1101 = 0111

or as decimals

10 + 13 = 7

which can be seen from:

 1010 (10)
 1101 (13)
 0111 (7)
Because of the exclusive-OR function, the addition of any element to itself produces zero. So we
should not be surprised that in a Galois field:

2 + 2 = 0.

Table 7 in Appendix 8.3 provides a look-up table for additions in GF(16).

Subtraction of two Galois field elements turns out to be exactly the same as addition because
although the coefficients produced by subtracting the polynomials take the form:

ci = ai - bi for 0 ≤ i ≤ m-1

the resulting values for ci are the same as in (3). So, in this case, we get the more familiar result:

2 - 2 = 0

and for our other example:

10 - 13 = 7.

It is useful to realise that a field element can be added or subtracted with exactly the same effect, so
minus signs can be replaced by plus signs in field element arithmetic.

2.2.3 The field generator polynomial
An important part of the definition of a finite field, and therefore of a Reed-Solomon code, is the
field generator polynomial or primitive polynomial, p(x). This is a polynomial of degree m which is
irreducible, that is, a polynomial with no factors. It forms part of the process of multiplying two
field elements together. For a Galois field of a particular size, there is sometimes a choice of
suitable polynomials. Using a different field generator polynomial from that specified will produce
incorrect results.

For GF(16), the polynomial

1)(4 ++= xxxp (4)

is irreducible and therefore will be used in the following sections. An alternative which could have
been used for GF(16) is

1)(34 ++= xxxp .

2.2.4 Constructing the Galois field
All the non-zero elements of the Galois field can be constructed by using the fact that the primitive
element α is a root of the field generator polynomial, so that

 5

p(α) = 0.

Thus, for GF(16) with the field generator polynomial shown in (4), we can write:

α4 + α + 1 = 0

or

α4 = α + 1 (remembering that + and − are the same in a Galois field).

Multiplying by α at each stage, using α + 1 to substitute for α4 and adding the resulting terms can
be used to obtain the complete field as shown in Table 1. This shows the field element values in
both index and polynomial forms along with the binary and decimal short-hand versions of the
polynomial representation.

If the process shown in Table 1 is continued beyond α14, it is found that α15 = α0, α16 = α1, so
that the sequence repeats with all the values remaining valid field elements.

index
form

polynomial
form

binary
form

decimal
form

0 0 0000 0
α0 1 0001 1
α1 α 0010 2
α2 α2 0100 4
α3 α3 1000 8
α4 α + 1 0011 3
α5 α2 + α 0110 6
α6 α3 + α2 1100 12
α7 α3 + α + 1 1011 11
α8 α2 + 1 0101 5
α9 α3 + α 1010 10
α10 α2 + α + 1 0111 7
α11 α3 + α2 + α 1110 14
α12 α3 + α2 + α + 1 1111 15
α13 α3 + α2 + 1 1101 13
α14 α3 + 1 1001 9

Table 1 - The field elements for GF(16) with p(x) = x4 + x + 1

2.2.5 Galois field multiplication and division
Straightforward multiplication of two polynomials of degree m-1 results in a polynomial of degree
2m-2, which is therefore not a valid element of GF(2m). Thus multiplication in a Galois field is
defined as the product modulo the field generator polynomial, p(x). The product modulo p(x) is
obtained by dividing the product polynomial by p(x) and taking the remainder, which ensures that
the result is always of degree m-1 or less and therefore a valid field element.

For example, if we multiply the values 10 and 13 from GF(16) represented by their polynomial
expressions, we get:

xxxx
xxxxxxxxxx

+++=
+++++=+++

456

34356233)1)((.... (5)

 6

To complete the multiplication, the result of (5) has to be divided by x4 + x + 1.

 Division of one polynomial by another is similar to conventional long division. Thus it consists of
multiplying the divisor by a value to make it the same degree as the dividend and then subtracting
(which for field elements is the same as adding). This is repeated using the remainder at each stage
until the terms of the dividend are exhausted. The quotient is then the series of values used to
multiply the divisor at each stage plus any remainder left at the final stage.

This can be shown more easily by arranging the terms of the polynomials in columns according to
their significance and then the calculation can be made on the basis of the coefficient values (0 or 1)
as shown below.

 x6 x5 x4 x3 x2 x1 x0
dividend: 1 1 1 0 0 1 0
divisor × x2: 1 0 0 1 1
 1 1 1 1 1
divisor × x: 1 0 0 1 1
 1 1 0 0 0
divisor × 1: 1 0 0 1 1
 1 0 1 1
So the quotient is x2 + x + 1 and the remainder, which is the product of 10 and 13 that we were
originally seeking, is x3 + x + 1 (binary 1011 or decimal 11). So we can write:

10 × 13 = 11.

Table 8 in Appendix 8.3 provides a look-up table for multiplications in GF(16) with the field
generator polynomial of equation (4).

Alternatively the process of equation (5) can be performed using the coefficients of the polynomials
in columns. First shifted versions of x3 + x are added according to the non-zero coefficients of x3 +
x2 + 1. Then, instead of the division process, we can use substitutions taken from Table 1 for any
non-zero terms that exceed the degree of the field elements and add these as shown:

 x6 x5 x4 x3 x2 x1 x0
× x3: 1 0 1 0
× x2: 1 0 1 0
× 1: 1 0 1 0
 1 1 1 0 0 1 0
x4 = x + 1 0 0 1 1
x5 = x2 + x 0 1 1 0
x6 = x3 + x2 1 1 0 0
 1 0 1 1
A further alternative technique for multiplication in a Galois field, which is also convenient for
division, is based on logarithms. If the two numbers to be multiplied are represented in index form,
then the product can be obtained by adding the indices modulo 2m-1. For example, by inspecting
the values in Table 1 we find:

10 = α9 and 13 = α13

so

10 × 13 = α9 × α13 = α(9+13)mod 15 = α(22)mod 15 = α7.

Again by inspection using Table 1 we find that:

α7 = 11

 7

giving the result obtained by multiplying the polynomials.

A slight disadvantage of the logarithmic method is that field element 0 cannot be represented in
index form. The method therefore has to sense the presence of zero values and force the result
accordingly.

The logarithmic technique can also be used for division:

11 ÷ 10 = α7 ÷ α9 = α(7-9)mod 15 = α(-2)mod 15 = α13 = 13.

However, division of two field elements is often accomplished by multiplying by the inverse of the
divisor. The inverse of a field element is defined as the element value that when multiplied by the
field element produces a value of 1 (= α0). It is therefore possible to tabulate the inverse values of
the field elements using Table 1.

For example, 10 = α9, so its inverse is α(-9)mod 15 = α6 = 12 from Table 1. So we can write:

11 ÷ 10 = 11 × 12

and then the product can be calculated by any of the methods above to be 13.

2.3 Constructing a Reed-Solomon code
The values of the message and parity symbols of a Reed-Solomon code are elements of a Galois
field. Thus for a code based on m-bit symbols, the Galois field has 2m elements.

2.3.1 The code generator polynomial
An (n, k) Reed-Solomon code is constructed by forming the code generator polynomial g(x),
consisting of n-k=2t factors, the roots of which are consecutive elements of the Galois field.
Choosing consecutive elements ensures that the distance properties of the code are maximised.
Thus the code generator polynomial takes the form:

))....()(()(121 −++ +++= tbbb xxxxg ααα (6)

It should be noted that this expression is often quoted in the literature with subtle variations to catch
the unwary. For example, the factors are often written as (x − αi), which emphasises that g(x) = 0
when x = αi and those familiar with Galois fields realise that − αi is exactly the same as αi. Also,
some choose roots starting with α0 (b=0 in equation 6), while many others start with α, the
primitive element (b=1 in equation 6). While each is valid, it results in a completely different code
requiring changes in both the coder and decoder operation. If the chosen value of b is near 2m-1,
then some of the roots may reach or exceed 12 −m

α . In this case the index values modulo 2m-1 can be
substituted. Small reductions in the complexity of hardware implementations can result by
choosing b=0, but this is not significant.

2.3.2 Worked example based on a (15, 11) code
Specific examples are very helpful for obtaining a full understanding of the processes involved in
Reed-Solomon coding and decoding. However, the (255, 239) code used in DVB-T is too unwieldy
to be used for an example. In particular, the message length of several hundred symbols leads to
polynomials with several hundred terms! In view of this, the much simpler (15, 11) code will be
used to go through the full process of coding and decoding using methods that can be extended
generally to other Reed-Solomon codes. Definition details of the (255, 239) code used for DVB-T
are shown in Section 2.3.3.

 8

For a (15, 11) code, the block length is 15 symbols, 11 of which are information symbols and the
remaining 4 are parity words. Because t=2, the code can correct errors in up to 2 symbols in a
block. Substituting for n in:

n = 2m - 1

gives the value of m as 4, so each symbol consists of a 4-bit word and the code is based on the
Galois field with 16 elements. The example will use the field generator polynomial of equation (4),
so that the arithmetic for the code will be based on the Galois field shown in Table 1.

The code generator polynomial for correcting up to 2 error words requires 4 consecutive elements
of the field as roots, so we can choose:

g(x) = (x + α0) (x + α1) (x + α2) (x + α3)

 = (x + 1) (x + 2) (x + 4) (x + 8)

using the index and decimal short-hand forms, respectively.

This expression has to be multiplied out to produce a polynomial in powers of x, which is done by
multiplying the factors and adding together terms of the same order. As multiplication is easier in
index form and addition is easier in polynomial form, the calculation involves repeatedly converting
from one format to the other using Table 1. This is best done with a computer program for all but
the simplest codes. Alternatively, we can take it factor by factor and use the look-up tables of
Appendix 8.3 to give:

g(x) = (x + 1) (x + 2) (x + 4) (x + 8)

 = (x2 + 3x + 2) (x + 4) (x + 8)

 = (x3 + 7x2 + 14x + 8) (x + 8)

 = x4 + 15x3 + 3x2 + x + 12 (7).

This can also be expressed as:

g(x) = α0x4 + α12x3 + α4x2 + α0x + α6

with the polynomial coefficients in index form.

2.3.3 The code specified for DVB-T
The DVB-T standard [2] specifies a (255, 239, t=8) Reed-Solomon code, shortened to form a (204,
188, t=8) code, so that the 188 bytes of the input packet will be extended with 16 parity bytes to
produce a coded block length of 204 symbols. For this code, the Galois field has 256 elements
(m=8) and the polynomial representation of a field element is:

0
0

1
1

2
2

3
3

4
4

5
5

6
6

7
7 xaxaxaxaxaxaxaxa +++++++

corresponding to the binary numbers 00000000 to 11111111. Alternatively, we can use the decimal
equivalents 0 to 255.

The specification also mentions the field generator polynomial, given as:

1)(2348 ++++= xxxxxp (8).

This allows us to construct a table of field element values for GF(256) as shown in Table 2. This
shows how the field element values can be built up row by row for the 256 element Galois field in a
similar manner to the construction of Table 1. At each step the binary number representing the

 9

polynomial coefficient values is shifted to the left by one position (equivalent to multiplying by x)
and 0 is added in the x0 column. If the shift causes a 1 to be lost at the left-hand side, then
00011101 is added to the columns, this being the substitution for x8 obtained from the field
generator polynomial (8) as

x8 = x4 + x3 + x2 + 1.

Clearly the full table for this field would be extensive.

polynomial form index
form x7 x6 x5 x4 x3 x2 x1 x0

decimal

0 0 0 0 0 0 0 0 0 0
α0 0 0 0 0 0 0 0 1 1
α1 0 0 0 0 0 0 1 0 2
α2 0 0 0 0 0 1 0 0 4
α3 0 0 0 0 1 0 0 0 8
α4 0 0 0 1 0 0 0 0 16
α5 0 0 1 0 0 0 0 0 32
α6 0 1 0 0 0 0 0 0 64
α7 1 0 0 0 0 0 0 0 128
α8 0 0 0 1 1 1 0 1 29
α9 0 0 1 1 1 0 1 0 58

α254 1 0 0 0 1 1 1 0 142

Table 2 - Construction of the Galois field of 256 elements

The DVB-T specification shows the code generator polynomial as:

g(x) = (x+λ0) (x+λ1) (x+λ2) (x+λ15) where λ = 02HEX.

This identifies the primitive element of the Galois field as 2, represented by the symbol λ rather
than the more usual α, and corresponds to the b=0 version of equation (6).

When multiplied out, the DVB-T code generator polynomial becomes:

g(x) = x16 + 59x15 + 13x14 + 104x13 + 189x12 + 68x11 + 209x10 + 30x9

 + 8x8 + 163x7 + 65x6 + 41x5 + 229x4 + 98x3 + 50x2 + 36x + 59.

3 Reed-Solomon Encoding
The Galois field theory of Section 2 provides the grounding to the processes of Reed-Solomon
encoding and decoding described in this and the following sections. In particular, the arithmetic
processes on which hardware implementations are based rely heavily on the preceding theory.

3.1 The encoding process

3.1.1 The message polynomial
The k information symbols that form the message to be encoded as one block can be represented by
a polynomial M(x) of order k-1, so that:

M(x) = Mk-1xk-1 + + M1x + M0

 10

where each of the coefficients Mk-1,, M1, M0 is an m-bit message symbol, that is, an element of
GF(2m). Mk-1 is the first symbol of the message.

3.1.2 Forming the code word
To encode the message, the message polynomial is first multiplied by xn-k and the result divided by
the generator polynomial, g(x). Division by g(x) produces a quotient q(x) and a remainder r(x),
where r(x) is of degree up to n-k-1. Thus:

)(
)()(

)(
)(

xg
xrxq

xg
xxM kn

+=× −

 (9)

Having produced r(x) by division, the transmitted code word T(x) can then be formed by combining
M(x) and r(x) as follows:

T(x) = M(x) × xn-k + r(x)

 = Mk-1xn-1 + + M0xn-k + rn-k-1xn-k-1 + + r0

which shows that the code word is produced in the required systematic form.

3.1.3 Basis for error correction
Adding the remainder, r(x), ensures that the encoded message polynomial will always be divisible
by the generator polynomial without remainder. This can be seen by multiplying equation (9) by
g(x):

)()()()(xrxqxgxxM kn +×=× −

and rearranging:

)()()()(xqxgxrxxM kn ×=+× −

whereupon we note that the left-hand side is the transmitted code word, T(x), and that the right-hand
side has g(x) as a factor. Also, because the generator polynomial, equation (6), has been chosen to
consist of a number of factors, each of these is also a factor of the encoded message polynomial and
will divide it without remainder. Thus, if this is not true for the received message, it is clear that
one or more errors has occurred.

3.2 Encoding example
We can now choose a message consisting of eleven 4-bit symbols for our (15, 11) code, for
example, the values 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 which we wish to encode. These values are
represented by a message polynomial:

x10 + 2x9 + 3x8 + 4x7 + 5x6 + 6x5 + 7x4 + 8x3 + 9x2 + 10x + 11 (10).

The message polynomial is then multiplied by x4 to give:

x14 + 2x13 + 3x12 + 4x11 + 5x10 + 6x9 + 7x8 + 8x7 + 9x6 + 10x5 + 11x4

to allow space for the four parity symbols. This polynomial is then divided by the code generator
polynomial, equation (7), to produce the four parity symbols as a remainder. This can be
accomplished in columns as a long division process as shown before, except that in this case, the
coefficients of the polynomials are field elements of GF(16) instead of binary values, so the process
is more complicated.

 11

3.2.1 Polynomial division
At each step the generator polynomial is multiplied by a factor, shown at the left-hand column, to
make the most significant term the same as that of the remainder from the previous step. When
subtracted (added), the most significant term disappears and a new remainder is formed. The 11
steps of the division process are as follows:

 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0
 1 2 3 4 5 6 7 8 9 10 11 0 0 0 0
× x10 1 15 3 1 12
 13 0 5 9 6
× 13x9 13 7 4 13 3
 7 1 4 5 7
× 7x8 7 11 9 7 2
 10 13 2 5 8
× 10x7 10 12 13 10 1
 1 15 15 9 9
× 1x6 1 15 3 1 12
 0 12 8 5 10
× 0x5 0 0 0 0 0
 12 8 5 10 11
× 12x4 12 8 7 12 15
 0 2 6 4 0
× 0x3 0 0 0 0 0
 2 6 4 0 0
× 2x2 2 13 6 2 11
 11 2 2 11 0
× 11x 11 3 14 11 13
 1 12 0 13 0
× 1 1 15 3 1 12
 3 3 12 12

and the division produces the remainder:

r(x) = 3x3 + 3x2 + 12x + 12.

The quotient, q(x), produced as the left-hand column of multiplying values is not required and is
discarded.

The encoded message polynomial T(x) is then:

x14 + 2x13 + 3x12 + 4x11 + 5x10 + 6x9 + 7x8 + 8x7

 + 9x6 + 10x5 + 11x4 + 3x3 + 3x2 + 12x + 12 (11)

or, written more simply:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 3, 12, 12.

 12

3.2.2 Pipelined version
Hardware encoders usually operate on pipelined data, so the division calculation is made in a
slightly altered form using the message bits one at a time as they are presented:

 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0
 0 0 0 0
 1
g(x) × 1→ 15 3 1 12
 15 3 1 12
 2
g(x) × 13→ 7 4 13 3
 4 5 1 3
 3
g(x) × 7→ 11 9 7 2
 14 8 4 2
 4
g(x) × 10→12 13 10 1
 4 9 8 1
 5
g(x) × 1→ 15 3 1 12
 6 11 0 12
 6
g(x) × 0→ 0 0 0 0
 11 0 12 0
 7
g(x) × 12→ 8 7 12 15
 8 11 12 15
 8
g(x) × 0→ 0 0 0 0
 11 12 15 0
 9
g(x) × 2→ 13 6 2 11
 1 9 2 11
 10
g(x) × 11→ 3 14 11 13
 10 12 0 13 0
 11
g(x) × 1→ 15 3 1 12
 3 3 12 12

With this arrangement, the first message value 1 is added to the contents of the most significant
column, initially zero. The resulting value, 1, is then multiplied by the remaining coefficients of the
generator polynomial 15, 3, 1, 12 to give the values to be added to the contents of the remaining
columns, which are also initially zero. Then the second message value, 2, is added to the contents
of the next most significant column, 15, to produce 13. This value is multiplied by the generator
polynomial coefficients to give the values 7, 4, 13, and 3, and so on.

 13

3.3 Encoder hardware

3.3.1 General arrangement
The pipelined calculation shown in section 3.2.2 is performed using the conventional encoder
circuit shown in Figure 2. All the data paths shown provide for 4-bit values.

D

input

D D D

1 1512 3

output

control

GF
adder

GF
multiplier

KEY

Figure 2 - A (15, 11) Reed-Solomon encoder

During the message input period, the selector passes the input values directly to the output and the
AND gate is enabled. After the eleven calculation steps shown above have been completed (in
eleven consecutive clock periods) the remainder is contained in the D-type registers. The control
waveform then changes so that the AND gate prevents further feedback to the multipliers and the
four remainder symbol values are clocked out of the registers and routed to the output by the
selector.

3.3.2 Galois field adders
The adders of Figure 2 perform bit-by-bit addition modulo-2 of 4-bit numbers and each consists of
four 2-input exclusive-OR gates. The multipliers, however, can be implemented in a number of
different ways.

3.3.3 Galois field constant multipliers
Since each of these units is multiplying by a constant value, one approach would be to use a full
multiplier and to fix one input. Although a full multiplier is significantly more complicated, with an
FPGA design, the logic synthesis process would strip out at least some of the unused circuitry.
More will be said of full multipliers in Section 5.3.4.1. The other two approaches that come to
mind are either to work out the equivalent logic circuit or to specify it as a look-up table, using a
read-only memory.

3.3.3.1 Dedicated logic constant multipliers
For the logic circuit approach, we can work out the required functionality by using a general
polynomial representation of the input signal a3α3 + a2α2 + a1α + a0. This is then multiplied by the
polynomials represented by the values 15, 3, 1 and 12 from Table 1. This involves producing a
shifted version of the input for each non-zero coefficient of the multiplying polynomial. Where the
shifted versions produce values in the α6, α5 or α4 columns, the 4-bit equivalents (from Table 1) are
substituted. The bit values in each of the α3, α2, α1 and α0 columns are then added to give the
required input bit contributions for each output bit.

 14

For example, for multiplication by 15 (= α3 + α2 + α + 1):

 α6 α5 α4 α3 α2 α1 α0
×α3 a3 a2 a1 a0 0 0 0
×α2 a3 a2 a1 a0 0 0
×α a3 a2 a1 a0 0
×1 a3 a2 a1 a0
 a3 a2+a3 a1+a2+a3 0 0 a1+a2+a3 a1+a2+a3
 0 a2+a3 a2+a3 0
 a3 a3 0 0
 a0+a1+a2 a0+a1 a0 a0+a1+a2+a3

The input bits contributing to a particular output bit are identified by the summation at the foot of
each column. Similar calculations can be performed for multiplication by 3 (= α + 1), 1 (=1) and
12 (= α3 + α2) and give the results:

 α3 α2 α1 α0

 ×3 a2+a3 a1+a2 a0+a1+a3 a0+a3

 ×1 a3 a2 a1 a0

 ×12 a0+a1+a3 a0+a2 a1+a3 a1+a2

As the additions are modulo 2, these are implemented with exclusive-OR gates as shown in Figure
3.

a2

a1

a0

o2

o1

o0

a3 o3

multiply by 15

a2

a1

a0

o2

o1

o0

a3 o3

multiply by 3

a2

a1

a0

o2

o1

o0

a3 o3

a2

a1

a0

o2

o1

o0

a3 o3

multiply by 12multiply by 1

Figure 3 - Multipliers for the circuit of Figure 2

3.3.3.2 Look-up table constant multipliers
Alternatively, each multiplier can be implemented as a look-up table with 2m = 16 entries. The
entry values can be obtained by cyclically shifting the non-zero elements from Table 1 according to
the index of the multiplication factor. This is because the multiplying index is added to the index of
the input, modulo 15, thus shifting the results according to the multiplying value. However, the
binary values of the polynomial coefficients of the input need to be arranged in ascending order to
match the binary addressing of the look-up table memory. When this is done the values shown in
Table 3 are produced.

 15

input ×15 = α12 ×3 = α4 ×1 = α0 ×12 = α6
index
form

decimal
form

decimal
form

decimal
form

decimal
form

decimal
form

0 0 0 0 0 0
α0 1 15 3 1 12
α1 2 13 6 2 11
α4 3 2 5 3 7
α2 4 9 12 4 5
α8 5 6 15 5 9
α5 6 4 10 6 14
α10 7 11 9 7 2
α3 8 1 11 8 10
α14 9 14 8 9 6
α9 10 12 13 10 1
α7 11 3 14 11 13
α6 12 8 7 12 15
α13 13 7 4 13 3
α11 14 5 1 14 4
α12 15 10 2 15 8

Table 3 - Look-up tables for the fixed multipliers of Figure 2

3.4 Code shortening
For a shortened version of the (15, 11) code, for example a (12, 8) code, the first three terms of the
message polynomial, equation (10), would be set to zero. The effect of this on the pipelined
calculation in section 3.2.2 is that all the columns would contain zero until the first non-zero input
value associated with the x11 term. The calculation would then proceed as if it had been started at
that point. Because of this, the circuit arrangement of Figure 2 can be used for the shortened code
as long as the control waveform is high during the input data period, in this case eight clock periods
instead of eleven.

4 Theory of error correction

4.1 Introducing errors
Errors can be added to the coded message polynomial, T(x), in the form of an error polynomial,
E(x). Thus the received polynomial, R(x), is given by:

R(x) = T(x) + E(x) (12)

where

E(x) = En-1xn-1 + + E1x + E0

and each of the coefficients En-1 E0 is an m-bit error value, represented by an element of GF(2m),
with the positions of the errors in the code word being determined by the degree of x for that term.
Clearly, if more than t = (n-k)/2 of the E values are non-zero, then the correction capacity of the
code is exceeded and the errors are not correctable.

 16

4.2 The syndromes

4.2.1 Calculating the syndromes
In section 3.1.3 it was shown that the transmitted code word is always divisible by the generator
polynomial without remainder and that this property extends to the individual factors of the
generator polynomial. Therefore the first step in the decoding process is to divide the received
polynomial by each of the factors (x + αi) of the generator polynomial, equation (6). This produces
a quotient and a remainder, that is:

12)()(−+≤≤
+

+=
+

tbibfor
x

SxQ
x

xR
i

i
ii αα

 (13)

where b is chosen to match the set of consecutive factors in (6). The remainders Si resulting from
these divisions are known as the syndromes and, for b=0, can be written as S0 S2t-1.

Rearranging (13) produces:

)()()(xRxxQS i
ii ++×= α

so that when x = αi this reduces to:

Si = R(αi)

 = Rn-1(αi)n-1 + Rn-2(αi)n-2 + + R1αi + R0 (14)

where the coefficients Rn-1 R0 are the symbols of the received code word. This means that each
of the syndrome values can also be obtained by substituting x = αi in the received polynomial, as an
alternative to the division of R(x) by (x + αi) to form the remainder.

4.2.2 Horner's method
Equation (14) can be re-written as:

Si = (.... (Rn-1αi + Rn-2)αi + + R1)αi + R0

In this form, known as Horner's method, the process starts by multiplying the first coefficient Rn-1
by αi. Then each subsequent coefficient is added to the previous product and the resulting sum
multiplied by αi until finally R0 is added. This has the advantage that the multiplication is always
by the same value αi at each stage.

4.2.3 Properties of the syndromes
Substituting in equation (12):

R(αi) = T(αi) + E(αi)

in which T(αi) = 0 because x+αi is a factor of g(x), which is a factor of T(x). So:

R(αi) = E(αi) = Si (15).

This means that the syndrome values are only dependent on the error pattern and are not affected by
the data values. Also, when no errors have occurred, all the syndrome values are zero.

 17

4.3 The syndrome equations
While the relationship in equation (14) between the syndromes and the received code word allows
the syndrome values to be calculated, that in equation (15) between the syndromes and the error
polynomial can be used to produce a set of simultaneous equations from which the errors can be
found. To do this, the error polynomial E(x) is re-written to include only the terms that correspond
to errors. So assuming v errors have occurred, where v ≤ t:

ve
v

ee xYxYxYxE +++=)(21
21

where e1, ev identify the locations of the errors in the code word as the corresponding powers of
x, while Y1, Yv represent the error values at those locations. Substituting this in (15) produces

i
vv

ii

ie
v

ieie

i
i

XYXYXY

YYY

ES
v

+++=

+++=

=

....

....

)(

2211

21
21 ααα

α

where

ve
v

e XX αα == ,....,1
1 are known as error locators.

Then the 2t syndrome equations can be written as:



















×























=























−−−
−

vt
v

tt

v

v

t

Y

Y
Y

XXX

XXX
XXX

S

S
S

M

K

MMM

MMM

K

K

M

M 2

1

1212
2

12
1

11
2

1
1

00
2

0
1

12

1

0

(16).

It is important to note here that the syndromes are written as S0 S2t-1 to correspond with the roots
α0 α2t-1 and the powers of X are dependent on having chosen those roots in equation (6).

4.4 The error locator polynomial
The next step is to introduce the error locator polynomial. This turns out to be one of the more
confusing steps in Reed-Solomon decoding because the literature defines two different, but related,
expressions as the error locator polynomial. One form, often denoted σ(x), is constructed to have
the error locators X1 Xv as its roots, that is, v factors of the form (x+Xj) for j= 1 to v. When
expanded, these factors produce a polynomial of degree v with coefficients σ1 σv:

vv
vv

v

xxx

XxXxXxx

σσσ
σ

++++=

+++=

−
−

1
1

1

21

....

))....()(()(

The alternative form is usually denoted Λ(x). This is constructed to have v factors of the form
(1+Xjx) and therefore has the inverses X1

-1, , Xv
-1 of the v error locators as its roots. When

expanded, these factors produce a polynomial of degree v with coefficients Λ1 Λv:

)1)....(1)(1()(21 xXxXxXx v+++=Λ

v
v

v
v xxx Λ+Λ++Λ+= −
−

1
111 (17).

However, it turns out that

 18

 





Λ× =

x
xx v 1)(σ

so the coefficients σ1 σv are the same as Λ1 Λv.

4.5 Finding the coefficients of the error locator polynomial

4.5.1 The direct method

For each error, there is a corresponding root Xj
-1 that makes Λ(x) equal to zero. So

0....1 1
1

1
1 =Λ+Λ++Λ+ −+−

−
− v

jv
v

jvj XXX

or multiplied through by YjXj
i+v:

0.... 1
1

1
1 =Λ+Λ++Λ+ +

−
−++ i

jjv
i

jjv
vi

jj
vi

jj XYXYXYXY .

Similar equations can be produced for all the errors (different values of j) and the terms collected so
that:

∑∑∑
==

−+

=

+ =Λ++Λ+
v

j

i
jj

v

j
v

vi
jj

v

j

vi
jj XYXYXY

11

1

1
1 0....

or

0....11 =Λ++Λ+ −++ ivvivi SSS

recognising that the summation terms are the syndrome values using (16). Similar equations can be
derived for other values of i so that:

0....11 =Λ++Λ+ −++ ivvivi SSS for i = 0, , 2t-v-1 (18)

so producing a set of 2t-v simultaneous equations, sometimes referred to as the key equations, with
Λ1 Λv as unknowns.

To solve this set of equations for Λ1 Λv, we can use the first v equations, represented by the
matrix equation (19), except that, at this point, v is unknown:























Λ

Λ
Λ
Λ

×























=























−−−−

−+

−−

−−−

−

+

+

vvvvv

vvv

vvv

vvv

v

v

v

v

SSSS

SSSS
SSSS
SSSS

S

S
S
S

M

L

MMMM

L

L

L

M
3

2

1

1423222

211

121

0321

12

2

1

 (19).

Because of this, it is necessary to calculate the determinant of the matrix for each value of v, starting
at v=t and working down, until a non-zero determinant is found. This indicates that the equations
are independent and can be solved. The coefficients of the error locator polynomial Λ1 Λv can
then be found by inverting the matrix to solve the equations.

4.5.2 Berlekamp's algorithm
Berlekamp's algorithm [5, 6] is a more efficient iterative technique of solving equations (18) that
also overcomes the problem of not knowing v. This is done by forming an approximation to the
error locator polynomial, starting with Λ(x)=1. Then at each stage, an error value is formed by

 19

substituting the approximate coefficients into the equations corresponding to that value of v. The
error is then used to refine a correction polynomial, which is then added to improve the approximate
Λ(x). The process ends when the approximate error locator polynomial checks consistently with the
remaining equations. A statement of the algorithm and a worked example is included in the
Appendix as Section 8.1.

4.5.3 The Euclidean algorithm
Another efficient technique for obtaining the coefficients of the error location polynomial is based
on Euclid's method for finding the highest common factor of two numbers [7]. This uses the
relationship between the errors and the syndromes expressed in the form of an equation based on
polynomials. This is also often referred to as the fundamental or key equation and requires two new
polynomials, the syndrome and error magnitude polynomials, to be introduced.

4.5.3.1 The syndrome polynomial
For use in the key equation, the syndrome polynomial is defined as:

S(x) = Sb+2t-1x2t-1 + + Sb+1x + Sb

where the coefficients are the 2t syndrome values calculated from the received code word using
equation (14), or its equivalent for other values of b.

4.5.3.2 The error magnitude polynomial
The error magnitude polynomial can be written as:

Ω(x) = Ωv-1xv-1 + + Ω1x + Ω0

This is sometimes referred to as the error value or error evaluator polynomial.

4.5.3.3 The key equation
The key equation can then be written as:

Ω(x) = [S(x) Λ(x)] mod x2t

where S(x) is the syndrome polynomial and Λ(x) is the error locator polynomial. Any terms of
degree x2t or higher in the product are ignored, so that

Ω0 = Sb

Ω1 = Sb+1 + SbΛ1

M

Ωv-1 = Sb+v-1 + Sb+v-2Λ1 + + SbΛv-1

4.5.3.4 Applying Euclid's method to the key equation
Euclid's method [7] can find the highest common factor d of two elements a and b, such that:

ua + vb = d (20)

where u and v are coefficients produced by the algorithm.

The product of S(x), which has degree 2t-1, and Λ(x), which has degree v, will have degree 2t+v-1.
So the product can be expressed as:

 20

S(x) × Λ(x) = F(x) × x2t + Ω(x)

in which the terms of x2t and above are represented by the F(x) term and the remaining part is
represented by Ω(x). This can be rearranged as:

Λ(x) × S(x) + F(x) × x2t = Ω(x)

so that the known terms S(x) and x2t correspond to the a and b terms of (20). The algorithm then
consists of dividing x2t by S(x) to produce a remainder. S(x) then becomes the dividend and the
remainder becomes the divisor to produce a new remainder. This process is continued until the
degree of the remainder becomes less than t. At this point, both the remainder Ω(x) and the
multiplying factor Λ(x) are available as terms in the calculation.

4.6 Solving the error locator polynomial - the Chien search

Having calculated the coefficient values, Λ1 Λv, of the error locator polynomial, it is now
possible to find its roots. If the polynomial is written in the form:

Λ(x) = X1(x + X1
-1) X2(x + X2

-1)

then clearly the function value will be zero if x = X1
-1, X2

-1, , that is:

,...., 21 eex −−= αα .

The roots, and hence the values of X1 Xv, are found by trial and error, known as the Chien search
[8], in which all the possible values of the roots (the field values αi, 0 ≤ i ≤ n-1) are substituted into
equation (17) and the results evaluated. If the expression reduces to zero, then that value of x is a
root and identifies the error position. Since the first symbol of the code word corresponds to the xn-1
term, the search begins with the value α-(n-1) (=α1), then α-(n-2) (=α2), and continues to α0, which
corresponds to the last symbol of the code word.

4.7 Calculating the error values

4.7.1 Direct calculation
When the error locations X1 Xv are substituted into the syndrome equations (16), the first v
equations can be solved by matrix inversion to produce the error values Y1 Yv.

4.7.2 The Forney algorithm
This is an alternative means of calculating the error value Yj having established the error locator
polynomial Λ(x) and the error value polynomial Ω(x). If Berlekamp's algorithm has been used to
find Λ(x), then Ω(x) can be found by using the relationships in Section 4.5.3.3. The algorithm
makes use of the derivative of the error locator polynomial.

4.7.2.1 The derivative of the error locator polynomial
For a polynomial f(x) given by:

f(x) = 1 + f1x + f2x2 + + fvxv

the derivative is given by:

f '(x) = f1 + 2f2x + + vfvxv-1

However, for the error locator polynomial Λ(x), for x = Xj
-1, the derivative reduces to:

 21

Λ'(Xj
-1) = Λ1 + Λ3Xj

-2 + Λ5Xj
-4 +

which amounts to setting even-powered terms of the error locator polynomial to zero and dividing
through by x = Xj

-1.

4.7.2.2 Forney's equation for the error magnitude
Methods of calculating the error values Y1 Yv based on Forney's algorithm are more efficient than
the direct method of solving the syndrome equations as described in section 4.7.1. According to
Forney's algorithm, the error value is given by:

)('
)(

1

1
1

−

−
−

Λ
Ω

=
j

jb
jj X

X
XY (21)

where Λ'(Xj
-1) is the derivative of Λ(x) for x = Xj

-1. When b=1, the Xj
1-b term disappears, so the

formula is often quoted in the literature as simply Ω/Λ', which gives the wrong results for b=0 and
other values. (The value of b is defined in equation (6).)

It should be noted that equation (21) only gives valid results for symbol positions containing an
error. If the calculation is made at other positions, the result is generally non-zero and invalid. The
Chien search is therefore still needed to identify the error positions.

4.8 Error correction
Having located the symbols containing errors, identified by Xj, and calculated the values Yj of those
errors, the errors can be corrected by adding the error polynomial E(x) to the received polynomial
R(x). It should be remembered that conventionally the highest degree term of the received
polynomial corresponds to the first symbol of the received code word.

5 Reed-Solomon decoding techniques
Whereas the previous section has dealt with the underlying theory and, in some cases, identified
several alternative approaches to some processes, this section will describe a specific approach to
decoding hardware based around the Euclidean algorithm.

5.1 Main units of a Reed-Solomon decoder
The arrangement of the main units of a Reed-Solomon decoder reflects, for the most part, the
processes of the previous Section.

input
R

calculate the
syndromes

output

Chien search
for error
positions

form the
error location
polynomial:

Euclid

calculate the
error values:

Forney method

data delay

S
Ω, Λ'

Λ

Ω/Λ' Y

X

Figure 4 - Main processes of a Reed-Solomon decoder

 22

Thus, in Figure 4, the first process is to calculate the syndrome values from the incoming code
word. These are then used to find the coefficients of the error locator polynomial Λ1 Λv and the
error value polynomial Ω0 Ωv-1 using the Euclidean algorithm. The error locations are identified
by the Chien search and the error values are calculated using Forney's method. As these
calculations involve all the symbols of the received code word, it is necessary to store the message
until the results of the calculation are available. Then, to correct the errors, each error value is
added (modulo 2) to the symbol at the appropriate location in the received code word.

5.1.1 Including errors in the worked example.
The steps in the decoding process are illustrated by continuing the worked example of the (15, 11)
Reed-Solomon code that was used with the encoding process in Section 3.

Introducing two errors in the sixth (x9 term) and thirteenth (x2 term) symbols of the coded message
produces an error polynomial with two non-zero terms:

E(x) = E9x9 + E2x2

and we can choose, for example, E9 = 13 and E2 = 2, so that three bits of the sixth symbol are
altered while only one bit of the thirteenth symbol is affected. Although there are four bits in error,
in terms of the error correcting capacity of the code this constitutes only two errors because this is
based on the number of symbols in error. Therefore these errors should be correctable.

Addition of the errors makes the received message:

R(x) = (x14 + 2x13 + 3x12 + 4x11 + 5x10 + 6x9 + 7x8 + 8x7

 + 9x6 + 10x5 + 11x4 + 3x3 + 3x2 + 12x + 12) + (13x9 + 2x2)

 = x14 + 2x13 + 3x12 + 4x11 + 5x10 + 11x9 + 7x8 + 8x7

 + 9x6 + 10x5 + 11x4 + 3x3 + x2 + 12x + 12 (22)

or, more simply

1, 2, 3, 4, 5, 11, 7, 8, 9, 10, 11, 3, 1, 12, 12.

5.2 Syndrome calculation

5.2.1 Worked examples for the (15, 11) code

Section 4.2 showed that the syndrome corresponding to each root αi of the generator polynomial
could be calculated either by dividing the received polynomial R(x) by x + αi, or by evaluating
R(αi). In the latter case, Horner's method proves an efficient technique.

For the direct division process, we would use a method of calculation similar to that of Section
3.2.1. However, the pipelined approach of Section 3.2.2 is more suitable for hardware, so the
calculation of S0, corresponding to root α0, consists of the following steps where, in this case, the
multiplication by α0 (= 1) is trivial:

 23

 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0
 0
R14 1
α0 × 1→ 1
R13 2
α0 × 3→ 3
R12 3
α0 × 0→ 0
R11 4
α0 × 4→ 4
R10 5
α0 × 1→ 1
R9 11
α0 × 10→ 10
R8 7
α0 × 13→ 13
R7 8
α0 × 5→ 5
R6 9
α0 × 12→ 12
R5 10
α0 × 6→ 6
R4 11
α0 × 13→ 13
R3 3
α0 × 14→ 14
R2 1
α0 × 15→ 15
R1 12
α0 × 3→ 3
R0 12
 15
giving

S0 = 15.

Alternatively, we can use substitution of the root value in equation (22), so for S1, substituting α1
for x and using the equivalences of Table 1, we obtain:

S1 = (α1)14 + 2(α1)13 + 3(α1)12 + 4(α1)11 + 5(α1)10 + 11(α1)9 + 7(α1)8 + 8(α1)7

 + 9(α1)6 + 10(α1)5 + 11(α1)4 + 3(α1)3 + (α1)2 + 12(α1) + 12

 = 3

Or if we use Horner's method:

S2 = (((((((((((((1 × α2 + 2) × α2 + 3) × α2 + 4) × α2 + 5) × α2 + 11) ×

 α2 + 7) × α2 + 8) × α2 + 9) × α2 + 10) × α2 + 11) × α2 + 3) ×

 α2 + 1) × α2 + 12) × α2 + 12

 = 4

 24

Alternatively Horner's method can be written as a series of intermediate steps. So, for S3 where α3
= 8:

(0 + 1) × 8 = 8
(8 + 2) × 8 = 15
(15 + 3) × 8 = 10
(10 + 4) × 8 = 9
(9 + 5) × 8 = 10
(10 + 11) × 8 = 8
(8 + 7) × 8 = 1
(1 + 8) × 8 = 4
(4 + 9) × 8 = 2
(2 + 10) × 8 = 12
(12 + 11) × 8 = 13
(13 + 3) × 8 = 9
(9 + 1) × 8 = 12
(12 + 12) × 8 = 0
 0 + 12 = 12

so that

S3 = 12.

5.2.2 Hardware for syndrome calculation
The hardware arrangement used for syndrome calculation, shown in Figure 5, can be interpreted
either as a pipelined polynomial division or as an implementation of Horner's method.

input

D

αi

Si

control

Figure 5 - Forming a syndrome

In the case of polynomial division, the process is basically the same as that described for encoding
in section 3.2.2 (and shown in Figure 2), except much simpler because the degree of the divisor
polynomial is one. Thus there is only one feedback term with one multiplier, multiplying by αi, and
only one register. As before, the input values are added to the output of the register and all the data
paths are m-bit signals. The only difference in this case is that the AND-gate is used to prevent the
contents of the register contributing at the start of the code word, which was achieved in Figure 2 by
clearing the registers at the start of each block.

Alternatively, this circuit can be seen as a direct implementation of Horner's method, in which the
incoming symbol value is added to the contents of the register before being multiplied by αi and the
result returned to the register.

Clearly, all n symbols of the code word have to be accumulated before the syndrome value is
produced. Also, 2t circuits of the form of Figure 5 are required, one for each value of αi, each

 25

corresponding to a root of the generator polynomial. The Galois field adders and fixed multipliers
can be implemented using the techniques described in Sections 3.3.2 and 3.3.3.

5.2.3 Code shortening
If the code is used in a shortened form, such as with a (12, 8) code as described in Section 3.4, then
the first part of the message is not present. Thus the pipelined calculation need only begin when the
first element of the shortened message is present. The same arrangement can therefore be used for
the shortened code provided that the AND gate is controlled to prevent the register contents
contributing to the first addition.

5.3 Forming the error location polynomial using the Euclidean algorithm

5.3.1 Worked example of the Euclidean algorithm
To continue the worked example to find the coefficients of the error locator polynomial, it is first
necessary to form the syndrome polynomial. The syndrome values obtained in Section 5.2.1 are:

S0 = 15, S1 = 3, S2 = 4 and S3 = 12

so the syndrome polynomial is:

S(x) = S3x3 + S2x2 + S1x + S0

 = 12x3 + 4x2 + 3x + 15

The first step of the algorithm (described in Section 4.5.3.4) is to divide x2t (in this case x4) by S(x).
This involves multiplying S(x) × 10x (10 = 1/12) and subtracting (adding), followed by S(x) × 6 (6 =
14/12) and subtracting. This gives the remainder 6x2 + 6x + 4. In the right hand process, the initial
value 1 is multiplied by the same values used in the division process and added to an initial sum
value of zero. So the right-hand calculation produces 0 + 1 × (10x + 6) = 10x + 6.

 x4 x3 x2 x1 x0 x2 x1 x0
dividend: 1 0 0 0 0 0 0
divisor × 10x: 1 14 13 12 10 0
 14 13 12 0 10 0
divisor × 6: 14 11 10 4 0 6
remainder: 6 6 4 10 6

Having completed the first division, the degree of the remainder is not less than t (= 2), so we do a
new division using the previous divisor as the dividend and the remainder as the divisor, that is,
dividing S(x) by the remainder 6x2 + 6x + 4. First the remainder is multiplied by 2x (2 = 12/6) and
subtracted, then multiplied by 13 (13 = 8/6) and subtracted to produce the remainder 3x + 14. At
the right hand side, the previous initial value (1) becomes the initial sum value and the previous
result (10x + 6) is multiplied by the values used in the division process. This produces 1 + (10x + 6)
× (2x + 13) = 7x2 + 7x + 9.

 x4 x3 x2 x1 x0 x2 x1 x0
dividend: 12 4 3 15 0 1
divisor × 2x: 12 12 8 7 12 0
 8 11 15 7 12 1
divisor × 13: 8 8 1 11 8
remainder: 3 14 7 7 9

 26

In general, the process would continue repeating the steps described above, but now the degree of
the remainder (= 1) is less than t (= 2) so the process is complete. The two results 7x2 + 7x + 9 and
3x + 14 are in fact γ×Λ(x) and γ×Ω(x), respectively, where in this case the constant factor γ=9. So
dividing through by 9 gives the polynomials in the defined forms:

Λ(x) = 14x2 + 14x + 1

and

Ω(x) = 6x + 15.

Further examples of the Euclidean algorithm, which result in somewhat different sequences of
operations, are shown in Appendix 8.2.

5.3.2 Euclidean algorithm hardware
The Euclidean algorithm can be performed using the arrangement of Figure 6 in which all data
paths are 4 bits wide. This arrangement broadly follows the calculation of Section 5.3.1 so that the
lower part of the diagram performs the division (the left-hand side of the calculation) while the
upper part performs the multiplication (the right-hand side). Initially, the B register is loaded to
contain the dividend and the A register to contain the syndrome values. Also, the C register is set to
1 and the D register, set to the initial sum, zero.

At each step, the contents of B3 is divided by A3 (that is, multiplied by the inverse of A3) and the
result used in the remaining multipliers. The results of the multiplications are then added to the
contents of the B and D registers to form the intermediate results. At step one, the results are
loaded back into the B and D registers and the contents of the A and C registers are retained. At
step two, the contents of the A and C registers are transferred to the B and D registers and the
calculation results are loaded into the A and C registers. Where necessary, the values are shifted
between registers of different significance to take account of multiplications by x. Table 4 shows
the contents of the registers at intermediate steps in the calculation.

step A3 A2 A1 A0 B3 B2 B1 B0 C1 C0 D2 D1 D0
1 12 4 3 15 1 0 0 0 0 1 0 0 0
2 12 4 3 15 14 13 12 0 0 1 0 10 0
3 6 6 4 0 12 4 3 15 10 6 0 0 1
4 6 6 4 0 8 11 15 0 10 6 7 12 1

Table 4 - Register contents in the calculation of Section 5.3.1

It should be noted that Figure 6 represents a simplification of the process and, as shown, will not
produce the correct results for some error patterns. This occurs when the contents of A3 is zero,
potentially resulting in division by zero. Some examples of this are shown in the Appendix, Section
8.2. Additional circuitry is required to sense these conditions and to alter the calculation sequence
of Figure 6 accordingly.

A further point is that the Λ and Ω outputs produced when the calculation is complete do not
include the final division shown in 5.3.1. Thus these values are multiplied by a constant (γ) relative
to their defined values.

The arrangement of Figure 6 shows the Euclidean algorithm in a highly parallel form and there is
considerable scope for reducing the hardware requirements by re-using circuit elements, particularly
the multipliers. A commonly used arrangement is to recognise that the upper and lower circuits of
Figure 6 are very similar. Because of this, it is possible to use one circuit with duplicated registers
and to interleave the steps of the calculation accordingly.

 27

D0

S0

inv

s
h
i
f
t

S1

S2

S3

0

0

0

1

0

0

0

0

1

0

γ

γΛ1

γΛ2

γΩ0

γΩ1

0

0

D1

D2

C0

C1

B0

B1

B2

B3

A0

A1

A2

A3

Figure 6 - The Euclidean processor

 28

5.3.2.1 Full multipliers
The Galois field multipliers described up to this point have involved multiplication by a constant,
whereas those of Figure 6 are full multipliers. Full multipliers can be implemented by similar
techniques to those described in Section 3.3.3, either as dedicated logic multipliers or as look-up
tables, although with 22m locations, the latter technique rapidly becomes inefficient as the value of
m increases. It is also possible to use look-up tables with 2m locations to convert to logarithms,
which can then be added modulo 2m - 1 and the result converted back with an inverse look-up table.
The need to sense zero inputs and produce a modulo 2m - 1 result generally makes this technique
more complicated than the shift-and-add approach.

a2

a1

a0

a3

o2

o1

o0

o3

b2

b1

b0

b3

Figure 7 - A full multiplier for GF(16)

Figure 7 shows the arrangement of a 4-bit by 4-bit shift-and-add multiplier, drawn to emphasise the
three underlying processes. First the array of AND gates generates the set of shifted product terms,
producing seven levels of significance. Next the first column of exclusive-OR gates sums (modulo
2) the products at each level. Finally, the three upper levels beyond the range of field values are
converted to fall within the field, using the relationships of Table 1, and the contributions added by
the three pairs of exclusive-OR gates.

5.3.2.2 Division or inversion
Having designed a multiplier, then it is probably most straightforward to implement Galois field
division using a look-up table with 2m locations to generate the inverse and then to multiply. The
inverses are easily calculated as shown in Table 5 using field elements in index form. This shows
the element values in ascending order to correspond with the addressing of the look-up table.

 29

input
(decimal)

input
(index)

inverse
(index)

inverse
(decimal)

 0 0 0 0
 1 α0 α0 1
 2 α1 α-1 = α14 9
 3 α4 α-4 = α11 14
 4 α2 α-2 = α13 13
 5 α8 α-8 = α7 11
 6 α5 α-5 = α10 7
 7 α10 α-10 = α5 6
 8 α3 α-3 = α12 15
 9 α14 α-14 = α1 2
 10 α9 α-9 = α6 12
 11 α7 α-7 = α8 5
 12 α6 α-6 = α9 10
 13 α13 α-13 = α2 4
 14 α11 α-11 = α4 3
 15 α12 α-12 = α3 8

Table 5 - Look-up table for inverse values in GF(16)

The table includes 0 as the Galois field inverse of 0.

5.4 Solving the error locator polynomial - the Chien search

5.4.1 Worked example

To try the first position in the code word, corresponding to ej=14, we need to substitute α-14 into the
error locator polynomial:

Λ(x) = 14x2 + 14x + 1

Λ(α-14) = 14(α-14)2 + 14(α-14) + 1

 = 14(α1)2 + 14(α1) + 1

 = α11 α2 + α11 α1 + α0

 = α13 + α12 + α0

 = 13 + 15 + 1

 = 3

and the non-zero result shows that the first position does not contain an error.

For subsequent positions, the power of α to be substituted will advance by one for the x term and by
two for the x2 term, so we can tabulate the calculations as shown in Table 6.

 30

x x2 term x term unity sum
α-14 α13 α12 1 3
α-13 α0 α13 1 13
α-12 α2 α14 1 12
α-11 α4 α0 1 3
α-10 α6 α1 1 15
α-9 α8 α2 1 0
α-8 α10 α3 1 14
α-7 α12 α4 1 13
α-6 α14 α5 1 14
α-5 α1 α6 1 15
α-4 α3 α7 1 2
α-3 α5 α8 1 2
α-2 α7 α9 1 0
α-1 α9 α10 1 12
α0 α11 α11 1 1

Table 6 - Terms in the Chien search example

Having derived the values for the first row (multiplying Λ2 by α2 and Λ1 by α), each new row can
be obtained from the previous row in the same way. Adding the terms together then produces the
sum for each row. The two sum values of zero in Table 6 identify the error positions correctly as
the 6th and 13th symbols, corresponding to the x9 and x2 terms, respectively, of the code word
polynomial.

Checking these results by multiplying out the factors, we obtain:

(α9x + 1)(α2x + 1) = α11x2 + (α9 + α2)x + 1

 = 14x2 + 14x + 1 = Λ(x) as before.

5.4.2 Hardware for polynomial solution
The calculations of Table 6 form the basis of the method used to find the roots of the error locator
polynomial shown in Figure 8. The value of each term in the polynomial is calculated by loading
the coefficient value γΛ and multiplying it by the appropriate power of α. Then at each successive
clock period, the next value of the term is produced by multiplying the previous result by the power
of α. Adding the values of the individual terms together produces the value of the polynomial for
each symbol position in turn. Detecting zero values of the sum identifies symbol positions
containing errors and is not affected by the presence of the multiplying factor γ.

It may be noted that in the case of b=0 the top term simplifies to holding the γ value in the register.

5.4.3 Code shortening
For shortened codes, because the polynomial value is calculated from the start of the full-length
code word, a correction to the initial value of each term is needed to take account of the
multiplications by α1, α2, which would have occurred at the missing symbol positions.

 31

D
α0

error
position

γ

D
α1

γΛ1

D
α2

γΛ2

=0

γΛ'(α-j)
αj

Figure 8 - The Chien search

5.5 Calculating the error values

5.5.1 Forney algorithm Example

The Forney method consists of calculating the quotient of two polynomials, Ω(x) and Λ'(x), the
derivative of Λ(x), for x = Xj

-1. The derivative is obtained by setting even powers of x to zero in:

Λ(x) = 14x2 + 14x + 1

and dividing by x, so that:

Λ'(Xj
-1) = 14 Xj

-1/ Xj
-1 = 14.

So from equation (21) we can derive that:

14
156 1 +

=
−

j
jj

X
XY

Knowing the positions of the errors from Section 5.4.2 as the 6th (x9 term) and 13th (x2 term) the
error values can be calculated for Xj = α9 as:

13
14

156 9
9 =+=

−ααjY

and for Xj = α2

2
14

156 2
2 =+=

−ααjY

which match the values introduced in section 5.1.1.

 32

5.5.2 Error value hardware

Hardware calculation of the two polynomials, Ω(x) and Λ'(x), can be performed in a similar manner
to that for the Chien search shown in Figure 8, in particular, the function value is calculated for each
symbol position in the code word in successive clock periods.

D
α0

error
value

γΩ0

D
α1

γΩ1

γΛ'(α-j)
αj inv

error
position

Figure 9 - Calculating error values

Thus in Figure 9, there are two circuits producing the values of the Ω1 and Ω0 terms, which are
added together. However, the arrangement includes some simplifications, so that the derivative
term is obtained directly from the Chien search circuit in Figure 8. It turns out that when code
generator polynomial roots beginning with α0 are chosen (b=0), the sum of the odd terms of Λ(x)
can be used directly. This provides Λ'(α-j)/αj directly, which eliminates the need to multiply Ω(α-j)
by αj. Thus the error value can be obtained by division of the two terms, shown in Figure 9 as
inversion and multiplication.

A further point is that the hardware arrangement operates without dividing through by the constant γ
as shown at the end of Section 5.3.1. This step is not needed because the multiplying factor cancels
in the division so that the error value results are not affected.

5.6 Error correction
Errors are corrected by adding the error values Y, to the received symbols R at the positions located
by the X values.

5.6.1 Correction example
The error values and positions can be formed into an error vector and added to the received code
word to produce the corrected message:

 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0
 0 0 0 0 0 13 0 0 0 0 0 0 2 0 0
 1 2 3 4 5 11 7 8 9 10 11 3 1 12 12
 1 2 3 4 5 6 7 8 9 10 11 3 3 12 12

 33

5.6.2 Correction hardware
The AND gate of Figure 9 is enabled at the error positions identified by the Chien search circuit of
Figure 8 so that the valid error values are added modulo-2 to the appropriately delayed symbol
values of the code word, as shown in Figure 4.

5.7 Implementation complexity
Having come this far, the reader will appreciate that the error correction capacity, t, has a strong
influence on the complexity of the equations. Also, the number of bits in a symbol, m, affects the
complexity of the Galois field arithmetic. Because of the full multiplications involved, the
calculations to find the coefficients of the error location polynomial Λ(x) and the error magnitude
polynomial Ω(x) form the most complicated part of the decoding process.

It is difficult to provide meaningful gate-count figures for hardware implementations of the coder
and decoder because these will depend strongly on the degree of parallelism that is used in the
circuitry. It is also possible to exchange complexity for delay in the decoding process. If the logic
family is able to support clock rates at a large multiple of the symbol rate (such as 8 times), then the
complexity of many parts of the circuit are capable of being reduced by that factor. Also, some
designers may feel that a processor-based implementation is appropriate.

For the DVB-T system, the Reed-Solomon coder represents only a small part (say 2-3%) of the
whole modulator. The decoder is much more significant, amounting to perhaps about 7% of the
demodulator. Considering that the demodulator may be approaching three times the complexity of
the modulator, the Reed-Solomon decoder is probably up to ten times the complexity of the coder.
To give a different perspective, the Reed-Solomon decoder may be about one quarter of the
complexity of the Fast Fourier Transform required for DVB-T.

So far, no mention has been made of erasure processing, in which the locations of the errors are
known (through some separate indication from the receiver) but the error values are not. This
doubles the error correction capacity of the code and consequently doubles the number of equations
to be solved. It therefore represents a substantial increase in complexity over the basic correction
process.

6 Conclusion
This note has described the theory and methods of Reed-Solomon coding and decoding with a view
to facilitating implementation in dedicated hardware. This has particular relevance in
implementations of the DVB-T standard.

Reed-Solomon coding circuits for DVB-T have already been implemented in hardware as part of
the Digital Radio Camera project. For the decoder, the techniques described have been tested in
software for the DVB-T standard and in hardware for simpler codes. It is believed that this has
identified many of the pitfalls involved in these processes.

7 References
[1] Reed, I. S. and Solomon, G., 1960. Polynomial Codes over Certain Finite Fields, J. SIAM.,

Vol. 8, pp. 300-304, 1960.

[2] ETSI, 1997. Digital broadcasting systems for television, sound and data services; Framing
structure, channel coding and modulation for digital terrestrial television. European
Telecommunication Standard ETS 300 744.

[3] Bose, R. C. and Chaudhuri, D. K. R., 1960. On a class of error-correcting binary group
codes. Inf. Control, Vol. 3, 1960.

 34

[4] Hocquenghem, A., 1959. Codes correcteurs d'erreurs, Chiffres., Vol. 2, 1959.

[5] Berlekamp, E. R. Algebraic Coding Theory. McGraw-Hill, New York, 1968.

[6] Purser, M., 1995. Introduction to error-correcting codes. Artech House, Boston, London,
1995.

[7] Pretzel, O. 1992. Error-correcting codes and finite fields. Clarendon Press, Oxford, 1992.

[8] Chien, R. T. 1964. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.
IEEE Transactions on Information Theory, Vol. IT-10, pp 357- 363.

8 Appendix

8.1 Berlekamp's algorithm

8.1.1 The algorithm
Berlekamp's algorithm [6] consists of a series of steps based on improving an approximation to the
error locator polynomial Λ(x) using a correction polynomial C(x) and the syndrome values S0
S2t-1 as inputs. It also requires a step parameter K and a parameter L which tracks the order of the
equations.

Initially we set:

 K = 1, L = 0, Λ(x) = 1 and C(x) = x.

Then each step consists of first calculating an error value e using:

∑
=

−−Λ+=
L

i
iKiSSe

1
10

So initially e = S0.

Then, provided that e is non-zero, we produce Λ*(x), a new approximation to the error locator
polynomial, given by:

Λ*(x) = Λ(x) + e × C(x).

If 2L < K, we set L = K - L and form a new correction polynomial from:

C(x) = Λ(x) ÷ e.

If e is zero, these calculations are omitted.

Then we produce a new C(x) by multiplying the old correction polynomial by x, replace Λ(x) by
Λ*(x) and increment K. The next step starts with the new values of K, L, Λ(x) and C(x) until K > 2t
in which case Λ(x) is the required error locator polynomial.

 35

8.1.2 Worked example
The syndrome values calculated in Section 5.2.1 are:

S0 = 15, S1 = 3, S2 = 4 and S3 = 12

Step 1:

 K L C2 C1 C0 Λ2 Λ1 Λ0
 1 0 0 1 0 0 0 1

e = S0 = 15

 15 × 0 1 0 → 0 15 0
 0 15 1
2L < K, so we set L = K - L = 1 and divide C(x) by e:

1/e = 1/15 = 8

 C2 C1 C0
 8 × Λ(x) → 0 0 8

Multiply C(x) × x → 0 8 0

Increment K → 2 ≤ 2t = 4, so continue.

Step 2:

 K L C2 C1 C0 Λ2 Λ1 Λ0
 2 1 0 8 0 0 15 1

e = S1 + Λ1×S0 = 3+15×15 = 9

 9 × 0 8 0 → 0 4 0
 0 11 1
2L = K, so we skip some steps, then:
 C2 C1 C0
 x × C(x) → 8 0 0

Increment K → 3 ≤ 2t = 4, so continue.

Step 3:

 K L C2 C1 C0 Λ2 Λ1 Λ0
 3 1 8 0 0 0 11 1

e = S2 + Λ1×S1 = 4+11×3 = 10

 10 × 8 0 0 → 15 0 0
 15 11 1
2L < K, so we set L = K - L = 2 and divide C(x) by e:

1/e = 1/10 = 12

 C2 C1 C0
 12 × Λ(x) → 0 13 12

 x × C(x) → 13 12 0

Increment K → 4 ≤ 2t = 4, so continue.

 36

Step 4:

 K L C2 C1 C0 Λ2 Λ1 Λ0
 4 2 13 12 0 15 11 1

e = S3 + Λ1×S2 + Λ2×S1 = 12+11×4+15×3 = 4

 4 × 13 12 0 → 1 5 0
 14 14 1
2L = K, so we skip some steps, then:
 C2 C1 C0
 x × C(x) → 12 0 0

Increment K → 5 > 2t = 4, so the process is complete and Λ(x) = 14x2 + 14x + 1 as before.

8.2 Special cases in the Euclidean algorithm arithmetic
There are particular combinations of error values which cause the Euclidean algorithm calculations
to depart from the steps shown in Section 5.3.1 and so require the processor of Figure 6 to follow a
different sequence. This is necessary when leading zero values occur in the divisor.

8.2.1 Single errors
Instead of the two errors introduced in Section 5.1.1, we will introduce only one, so that:

E(x) = E9x9

and we make E9 = 13 as before. Then the syndrome values obtained are:

S0 = 13, S1 = 11, S2 = 2 and S3 = 7

so the syndrome polynomial is:

S(x) = S3x3 + S2x2 + S1x + S0

 = 7x3 + 2x2 + 11x + 13

As before, the first step of the algorithm is to divide x2t by S(x), but this time we multiply S(x) × 6x
(6 = 1/7) and subtract, followed by multiplying S(x) × 14 (14 = 12/7) and subtracting. This gives
the remainder 10. In the right hand process, the initial value 1 is multiplied by the same values used
in the division process and added to an initial sum value of zero. So the right-hand calculation
produces 0 + 1 × (6x + 14) = 6x + 14.

 x4 x3 x2 x1 x0 x2 x1 x0
dividend: 1 0 0 0 0 0 0
divisor × 6x: 1 12 15 8 6 0
 12 15 8 0 6 0
divisor × 14: 12 15 8 10 0 14
remainder: 0 0 10 6 14

In this case, the degree of the remainder (=0) is already less than t (= 2) so that the required values
are:

γΛ(x) = 6x + 14

and

γΩ(x) = 10.

 37

When these values are used in the subsequent processes, the location and value of the error are
identified correctly. So for Xj = α9 we find:

γΛ(α-9) = 6(α-9) + 14

 = 6(α6) + 14

 = 0

and the error value is calculated as:

13
6

109 ==αjY

8.2.2 Errors that make S3 zero
If we change one of the original error values, so that:

E(x) = E9x9 + E2x2

but we make E9 = 7, instead of 13, while E2 = 2, as before. Then the syndrome values obtained are:

S0 = 5, S1 = 11, S2 = 11 and S3 = 0

and the syndrome polynomial is:

S(x) = S3x3 + S2x2 + S1x + S0

 = 11x2 + 11x + 5

This time we have to multiply S(x) × 5x2 (5 = 1/11) and subtract, followed by S(x) × 5x (5 = 1/11)
and subtracting, and then multiply S(x) × 15 (15 = 3/11) and subtract. This gives the remainder
x + 6. In the right hand process, the initial value 1 is multiplied by the same values used in the
division process and added to an initial sum value of zero. So the right-hand calculation produces
0 + 1 × (5x2 + 5x + 15) = 5x2 + 5x + 15.

 x4 x3 x2 x1 x0 x2 x1 x0
dividend: 1 0 0 0 0 0 0 0
divisor × 5x2: 1 1 2 5 0 0
 1 2 0 5 0 0
divisor × 5x: 1 1 2 0 5 0
 3 2 0 5 5 0
divisor × 15: 3 3 6 0 0 15
remainder: 1 6 5 5 15

In this case, after a three step division, the degree of the remainder (=1) is already less than t (= 2)
so that the required values are:

γΛ(x) = 5x2 + 5x + 15

and
γΩ(x) = x + 6.

Again these values lead to the correct locations and values of the errors. So for Xj = α9 we find:

γΛ(α-9) = 5(α-9)2 + 5(α-9) + 15

 38

 = 5(α6)2 + 5(α6) + 15

 = 0

and the error value is calculated as:

7
5

6 -9
9 =+= ααjY

Also for Xj = α2 we find:

γΛ(α-2) = 5(α-2)2 + 5(α-2) + 15

 = 5(α13)2 + 5(α13) + 15

 = 0

and the error value is calculated as:

2
5

6 -2
2 =+= ααjY

 39

8.3 Arithmetic look-up tables for the examples
Tables 7 and 8 below show the results for addition of two field elements (Table 7) and
multiplication of two field elements (Table 8) in the sixteen element Galois field with the field
generator polynomial 1)(4 ++= xxxp .

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
 2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
 3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
 4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11
 5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
 6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
 7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
 8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
 9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3
13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 7 - Addition table for use in the worked examples

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 2 0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
 3 0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2
 4 0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9
 5 0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6
 6 0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4
 7 0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11
 8 0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1
 9 0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14
 10 0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12
 11 0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3
 12 0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8
 13 0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7
 14 0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5
 15 0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

Table 8 - Multiplication table for use in the worked examples

