Strategies for supporting the DVB MHP in an MHEG-5 environment

J.C. Newell & I. Childs
BBC R&D Department
Overview

- DVB MHP and the UK DTG MHEG-5 specifications
- Migration scenarios
- Strategies for migration from MHEG-5
- Results of case studies
DVB MHP overview

- DVB has adopted the Java programming language as the interoperable application format for the MHP
- It has defined a version of Java called DVB-J
- Support for existing application formats can be provided using optional “plug-ins”
DVB-J

- Based on JDK 1.1 with TV specific extensions
- Supports a new application lifecycle model to support broadcast applications (Xlets)
- Broadcast data transport and application signalling
- Security and resource management framework
- TV-orientated user interface replaces the standard computer-centric GUI
Enhanced Broadcast Profile

- All information is received from the broadcast service
- “Local” interactivity only
Interactive Broadcast Profile

- Return channel using IP
- Allows interaction with remote servers
Internet Access Profile

- Built-in applications supporting Internet services (web browsing, email, etc)
- Able to connect to any ISP
MHEG-5 overview

- MHEG-5 is an object-orientated, declarative content format for interactive TV applications
- Designed for platforms with limited memory and processing power
- Applications are expressed in terms of high level constructs such as scenes, visible objects and links
- MHEG-6 provides support for Java
A closely specified profile of MHEG-5 has been developed for the digital terrestrial television services in the UK.

The UK MHEG-5 profile uses the Object Carousel specified in the DSM-CC specification to deliver applications and data across the broadcast channel.

To achieve interoperability it was necessary to define detailed profiles of the MHEG-5 and DSM-CC specifications and rules for text rendering, data caching, etc.
Migration scenarios

- In most cases legacy platforms will be present in large numbers
- The technical specification is likely to be inadequate to support a software upgrade to the MHP
- It will be necessary to support the legacy platform for the remainder of its economic lifetime
Migration goals

- When the MHP is introduced it should provide access to legacy applications or equivalent services.
- To encourage the uptake of the MHP platform it may be necessary to provide attractive new applications or enhancements to legacy applications.
- During the migration period broadcasters will be keen to minimise the duplication of authoring costs and bandwidth requirements.
Migration from UK MHEG-5 profile

- Many important elements of the MHP specification are compatible with the UK MHEG-5 profile:
 - Object carousel profile
 - Content formats
 - Fonts & text rendering

- The most significant difference is the declarative MHEG-5 content format and the procedural language used for MHP applications
Shared content assets approach

- One approach to migration is to broadcast MHEG-5 and MHP applications in parallel.
- The additional bandwidth required can be minimised by sharing a common pool of content assets such as images and graphics.
- The service provider has to maintain both types of application throughout the migration period.
Partial MHEG-5 decoder approach

- The shared assets approach can be extended by exploiting the objects from MHEG-5 applications within MHP applications.
- This is possible because of the powerful capabilities of DVB-J and the declarative nature of MHEG-5.
- MHP applications can load and parse MHEG-5 objects to create equivalent objects in DVB-J.
MHEG-5 plug-in approach

- An MHP with an MHEG-5 plug-in can run MHEG-5 applications in exactly the same way that they run on legacy platforms.
- However, navigation between legacy applications and MHP applications is difficult.
- It is impossible to enhance legacy applications to provide extra features for MHP users.
- This might mean that there is little incentive for consumers to choose an MHP rather than the legacy platform.
MHEG-6 plug-in approach

- The limitations of an MHEG-5 plug-in can be overcome by adopting the MHEG-6 approach

- MHEG-6 provides a good integration between the MHEG and Java domains. This could be extended to include some of the DVB-J APIs

- This would allow legacy applications to be enhanced during the migration period to provide additional features for the MHP whilst remaining backwards compatible with legacy platforms
Case study 1: shared assets approach

- To explore the shared assets approach a demonstration version of the BBC’s Digital Text service was created using DVB-J
- The application uses the same set of images and graphics used in the MHEG-5 application
- Each page of information is built up using Java “Lightweight Components”. These can be designed to be equivalent in appearance to the visible objects used in the original MHEG-5 application
Case study 1: conclusions

- The compatible broadcast transport protocol and content formats in the UK MHEG-5 profile and the MHP specification greatly simplify application development.

- The size of the Java class files and ancillary data files required for the DVB-J application was only 40 KB.

- If legacy applications use many images the additional bandwidth required to simulcast an MHP application may be relatively small.
Digital Text on the DVB MHP

Demonstration Application

Coming Soon...Comprehensive Weather Coverage

Wherever you are in the UK, you will get the latest weather forecasts and superb graphics on the new digital text service from the BBC.

BBC 00:12

Press Select to continue
Case study 2: partial MHEG-5 decoder

- In the shared assets approach additional data files were required to describe the layout of each page.
- However, this information is already present within the MHEG-5 application.
- A second MHP application was therefore developed using the partial MHEG-5 decoder approach.
- This extracts the required information directly from the MHEG-5 application.
Case study 2: technical approach

- Each MHEG-5 Scene object is loaded and parsed by the MHP to extract a list of MHEG-5 visible objects.
- Each MHEG-5 visible object is then loaded and parsed to extract the object attributes.
- Equivalent Java lightweight components are constructed using DVB-J.
- The information pages can then be displayed on the MHP with identical results to the MHEG-5 platform.
Case study 2: conclusions

- The size and complexity of the application is greater than the shared assets approach.
- However, the overall size of the application is reduced due to the elimination of the ancillary data files.
- DVB-J can easily load, parse and present MHEG-5 objects or even complete scenes from MHEG-5 applications and use them within MHP applications.
- This is a useful alternative to the use of a full MHEG-5 plug-in decoder.
Conclusions

- Several techniques have been proposed that can be used to provide services for the DVB MHP alongside an existing MHEG-5 service.
- These techniques can be used to provide equivalent or enhanced applications for the MHP, re-using elements from the existing MHEG-5 applications to minimise the additional bandwidth required.
- This suggests that MHEG-5 and the DVB MHP could coexist in a mutually supportive way during a period of migration between the two systems.
Further information

The DVB MHP specification can be obtained from ETSI:
http://webapp.etsi.org/pda/home.asp?wiki_id=10380

For more information contact:
chris.newell@rd.bbc.co.uk